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A THEORETICAL INVESTIGATION OF TKE RRAG OF GENERALIZED

AIRCRAFT CONFIGURATIONS IN SUPERSONIC FLOW*

By E. W. Grahsm, P. A. Lsgerstrom, R. M. Lither,
and B. J. Beane

cIHmrER 1. SUMMARY

It seems possible that, in supersonic flight, unconventional arrange-
ments of wings and bodies may offer advantages in the form of drag reduc-
tion. It is the purpose of this report to consider the methods for deter-
mining the pressure drag for such unconventional configurateions, and to
consider a few of the possibilities for drag reduction in highly idealized
aircraft.

The idealized aircraft me defined by distributions of lift snd
volume in three-dimensional space, and Hayes’ method of drag evaluation,
which is well adapted to such problems, is the fundamental.tool employed.
Other methods of drag evaluation are considered also wherever they appesr
to offer simplifications.

The basic singularities such as souxces, dipoles, lifting elements
and volume elements are discussed, and some of the useful inter-relations ‘“
between these elements are presented. Hayes’ method of drag evaluation
is derived in detail starting with the general momentum theorem.

In going frcm planar systems to spatial systems certain new problem
arise. For exsmple, interference between lift and thickness distributions
generaldy appears, and such effects are used to explain the difference
between the non-zero wave bag of Sears-Haack bodies and the zero wave
drag of Ferrari’s ring wing plus central body.

Another new feature of the spatial systems is that optimum configu.
rations generally sre not unique, there being an infinite fsmily of lift
or thickness distributions producing the ssme minimum drag. However it
is shown that all members of an optimum fsmily produce the ssme flow
field in a certain region external to the singularity distribution.

Other restits of this study indicate that certain spatial distri-
butions may produce materially less wave drag and vortex drag than com-
parable planar systems. It is not at all certain that such advantages
can be realized in practical aircraft designs, but further investigation
seems to be warranted. .

* Uneditedby the NACA (the Committee takes no responsibility for the
correctness of the author’s statements).

.
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CHAFTER II. INTRODUCTION
..

The primary purpose of this report is to consider the problems .
involved in exploring a broader class of aircraft configurationsthan
is ordinarily studied.for supersonic flight. It is necessary to deter-
mine whether any unconventional arrangements of wings and bodies offer
sufficient aerodynamic advs.stagesin the fo?anof drag reduction to merit
more detailed study. As a first step in this direction attention is

.-

directed to optimwn configurations,even though they are highly idealized
in form emd do not necessarily represent practical aircraft.

In the preliminary exploration of such conf@ur<ti.ons it is not
necesssry to know their detailed shapes. It is sufficient to define the –
aircraft as a distribution of lift and volume in space, without knowing
the csmber and twist of the wing surfaces supporting the LLft distri-
bution, and knowing only approximately the shapes of -thebodies con- -..

tatning the volume. —

Hayes’ method of drag evaluation is well.adapted to this type of
analysis and is one of the primary tools used. However other methods
and points of view are employed wherever they appear to offer further

,=
.

.—

~ -.

i?—
.

..

—

understanding of the problems. - ..
6

The properties of sources, dipoles, etc., are reviewed, and a sin-
gularity correspondingto an element of volume is introduced. Some &-
useful relations between three-dimensionaldistributions of different
typs of singularities are developed and later applied. Also Hayes’
method for drag evaluation is developed in detail.

,1

Since this report is exploratory in nature the investigationsmade
are frequently incomplete and somewhat isolated from each other. some
of the material of Ref. 2 and most of the material of Ref. 3 are included
in this report for convenience. ~ latter has also %een published in
The Aeronautical Quarterly, May 1955, under the title, “The Drag of
Non-Planar Thickness Distributions.inSupersonic Flow.” Permission to
reproduce this material.has been granted by ‘~ Royal Aeronautical
Society.

.,=. -ti:-—
—

., -— —
.-.- —

—
—

. . ,. .-.—.
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CHAPTER 111. SING7KARITDiSUT3LI.ZEDIN THE “LINEARIZED”

DESCRIPTION OF TEE FIQW ABOUT AIRCRAFT

& BASIC SINGULARITIES

The Source

For incompressible, non-viscous fluids the eqyation governing the
flow is the Laplace equation,

a2$+a2#+&=o
&’ ~ az2

(3a-1)

where @ is the perturbation velocity potential. A basic solution, which
exhibits spherical symmetry, is the source,

.

#sI =

This solution can be

-L
(3a-2)

41-J(X- g)’+ (y - ~)’+ (z - g)’

interpreted as representing the emanation of unit
volume of fluid per unit o~ time frcxn& point–~, q, ~. Because of
the linearity of Eq. (3a-1), other solutions of it can be built up by
a superposition of sources through the use of certain Umit ing proce-
dures; such resulting solutions are the horseshoe vortex, doublet, line
vortex, etc. Much is known about these solutions and with them the
flow over wings and bodSes csn be described mathematically.

In supersonic flow the governing clifferential equation is the
linearized potential eqution,

where x is the coordinate in the stresm direction aJ@ p =
tion (3a-3) can also be considered as the two-dimensional----

(3a-3)

=. Equ-
wave equation

where the x coordinate is thought of as the “time” variable.

If the y and z coordinates in the Laplace equation (Eq. Sa-1) are
multiplied by i~, then that equation is transformed into the wave equa-
tion; a simils.rtransformation of the source potential from Eq. (3a-2)
resuits in
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which can easily be

-.
7

-“ _
J- (3a-4)

(x-3)2- 132~Y - 11)2+ (z - &]

shown to be a solution of Eq. (3a-3). Eqution (3a-4)

ris real inside the forward and rear Mach co~es, (x - ~)2> j32(y - q)2+

sonic fl:w
a source.

associated
supersonic

L

end imaginary elsewhere; however, due to t-k nature of super-

only the solution in the rear Mach cone is used to represent
Since half of the real solution is discarded, the constant

—

z

REG/oAtOF/AIFLUENcEOF suP.eRsoNKSouRCE

w.
----

.—

—

—

-.

N

b’
.

with the
source.

incompressible# must be doubled to represent a unit
Thus the supersonic soume at k, q, ~ has the potential

.

[
0 Elsewhere —— —

where the x axis is in the free stresm direction. It CSJl be shown that
Eq. (3a-5) represents unit volume flow from the point g} q, ~; however,
care must be taken in the proof because of the s@gularities on the Mach

cone (cf. Ref.
concept of the

(4) he we use of the4)0 In the proof given by Ro%inson
finite part of an infinite integral.,an idea originally .

.
. . .-—

r-—
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introduced by Hadsmard(5). As in incompressible flow, other solutions
of Eq. (3a-3) can be built up by superposition of the basic source solu-
tions; some of the solutions csm also be obtained, as was the source,
by analo~ with the incompressible solutions.

Before going on to other solutions let us exsmine the supersonic
source in more detail. Since the velocities are infinite on the Mach
cone from a finite source, care must be taken in using such sources to
describe real flows. It is instructive to examine the isolated source
in terms of the limit of a finite line of sources in the free stresm
direction as the length tends to zero while the totsl strength remains
constant. Under the assumptions of slender %ody theory, if the line of
sources extends from x . 0 to x . X. with strength Kx, it represents a

cone of semi-vertex singleK/2U with a semi-infinite cylindrical after-
-—,-,

body (Fig. Sa-la). The velocities sre constant along conical surfaces

{

/NFINtTE ATREAR~CH
VELOCVIES: C~NE,ZER~ATF~R~ARD

MACH CONE
r

“\
-+

\

F

‘+ ,*
SURCE A
STRENGTH

\ #

KXO .-——-

~x
x.

Fig. Sa-la: Cone-cylinder and
source distribution repre-
senting it

Fig. 3a-lb: Perturbation flow
lines in x-z plsme for super-
sonic source, M = @

.
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frcm the origin; but on the Mach cone frcm x = X. the velocities become

infinite due to the discontinuity in source strength. The total.inte-

grated source strength C is equal to 1/2 -2. If ~ is allowed to
approach zero while C remains constant then in the limit a concentrated
source of strength C is obtained. The flow pattern in the xz plane for
the source at M = ~ is shown in Fig. 3a-lb~ (See also Ref. 6.) For a
source of finite strength the velocities are infinite on the Mach cone.

.
—..

G

—

.— —
.

The Three-IHmensional Doublet
—
-- —

—

The three-d-nsional doublet (or dipole) is a s~cond basic solution
of the wave eqwtion; it is obtained by allowing a source and sink of
equaL strength to approach one another while the product of source strength
and distance between source and sink remains constant.(and equal to unity
for a unit doublet). The ads of the doublet is defined here as the
vector extending from the ce’hterof the sink to the center of the source;

—

positi= values are ts.kento be those along the positive directions of
the coordinate system. For a doublet with its axis vertical, the above
method of derivation is equivalent to taking the negative partial deriva-
tive of the source potential in the z direction; that is,

— —...*

—

(3a-6)-” ~
-

where r2 = y2 + “z2.’E

— ..
quation (3a-6) represents.a positive doublet at “-”-

the origin, i.e., one with the source above the sink.

----

The Horseshoe Vortex
-.

.=

In supersonic theory, as well as in subsonic, the-flow around a
wing of finite span can be described by ceti-ainsolutions of the wave
equation called horseshoe vortices. In the subsonic case this singularity
is derived by integrating-inthe stresmwise direction a semi-i~inite Mne
of negative doublets with””axes“wrticd”. tie supe”rsonfchorseshoe vortex
can be derived in the ssme way as the subsonic one if only the finite - ._

—
——

psrt of the integral, as defined by Hadsmard(5), is taken as the solution.
This solution can also be obtained without the use of the Hadsmard finite
part if a stresmwise line of sources is differentiated.im the vertical
direction; thus,

,.
.

———

.
-. .—

—
.-
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The flow pattern for a horseshoe vortex in planes normal
stresm sxis is shown in Fig. 3a-2. Far behind the bound

u

(3a-7)

to the
vortex,

Fig. 3a-2: Flow pattern for supersonic horseshoe vortex
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the flow near the x axis is similsr to the flow .farjdownstream around
a subsonic horseshoe vortex &nd it is tti-spart w~<h gives rise to the
“vortex” drag. The dr%” associated withthe flow near t&Mach cone
is called “wave” drag. Equation (3a-7) represents a supersonic horsesh=
vortex of unit-strength, i.e., unit circulation around the bound vortex.
Since a force pUr Is associated with a bound vortex of strength r, we
shall, for convenience, discuss unit lifting el~nts which have as_theirl
velocity potentials

$~=
,2flpur2fb

Similarly, the potential for a unit side

—.—

force elem;nt

. ..—.

(%e)

is ,,..

The force associated with Eq. (3a-9) is directed in ~he positive y direc-
tion; a force in”any direction normal to the flow di=ection may be repre-
sented by a combination of lift and side force elements.

In the light of the discussion of the horseshoe;vortex, the tbree-
dimensi.onaldoublet (Eq. 3a-6) m&y be given added significance as a lift
transfer element’or element of moment. That is, the-doublet potential
csm be formed by subtracting the potential for a horseshoe vortex at x = Ax
from one at x = O (Fig. 3a-3) snd applying the proper limiting processes
(equivalentto clifferentiating the horseshoe vortex potential); in this
process the trailing vortices from the negative or rear element are can-
celed out by those”from the positive one, and the re~inhg part forms
the doublet or.lift transfer element.

.-

Fig. 3a-3: Formation of doublet or lti-ttr”&nsferelement frcm ~- .
horseshoe vortices —

v

*

—

-

.-

.—

-—

u

c

.

*—

.—

.- ,.-y
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The horseshoe vortex consists of a bound vortex of i?sfiniteshnal
length plus two free vortices trailing back to infinity. Since the
vortex drag and the lift associated with a finite wing can be evaluated
by considering the flow velocities far behind the wing, it is useful to
consider the trailing vo@ices as they appear in the Trefftz plane far
downstream from the bound vortex. The Trefftz plane flow represents a
two-dimensional doublet or dipole snd its potentisl is obtained by
letting X+CU inEq. (3a-7). Thus

d= ‘
2X(Y2Z+ Z2)

(3a-10)

It should be noted that the potential for this doublet is independent
of Mach number, sad thus the vortex drag calculations for a given lift
distribution are the same for supersonic and Incompressible flows. The
flow pattern about the doublet will be similar to the planar flow inside
the dashed circle in Fig. 3a-2.

wise

The Volume Element

Another useful solution is the doublet with its axis in the stresm-
direction; it has as a potential

Equation (%-n) can be shown to
volume equal to l/U (see Chapter
volume eiements aiong the x tis

x-@

$J
=. f(~)f$ d~

o

(x-u)

represent the potential for a unit of
VII) at the origin. k distribution of
with strength f{%) has as

The first term inEq. (3a-12)

of the integral 1s considered

is infinite; but if only the

(as defhed by Hads.mard(5)),

a potential

(3a-12)

finite part

thenEq. (3a-12)
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represents the potential
Thus a body can be built
frcm a series of sources

.
.. . .

— NACA TM 1423, . .

for a source distribution of strength f’(g).
up from a series of volume elements as well as
and sinks. —

—

—.

.

_.-—.. .=— ——
The Closed Vortex Line ...— .

Eqpation (3a-n) can be considered not only as a volume element but

also as a closed vortex line of circulation strengtl-11132in the yz plane
(Fig. 3a-4a). The line carries a constant intensity of forces directed
inward so that the total vector force is zero. The negative of Eq. (3a-n) -
would represent an element with the forces directed outward from it. The
potential for the closed vortex line can al-sobe obtained by applyi% the
&ndard

vortices
other in
trailing

z

t

limiting process to m element composed of two pairs of horseshoe

of strength l/p2, one with its axis in the negative z and the
the negative y direction (Fig. 3a-4b); when sdded together the
vortices cancel

fly

.F x=

(a)

leaving the closed vortex line.

Fig. 3a-4: Formation of closed vortex

Two-Dimensional Singularities

m

v

— —

line from horseshoe vortices
..

—. ——.
...—

In subsonic flow two-dimensional.sources, obtained by integrating
a line of three-dimensional souces in the lateral direction, have proven
useful in many problems; so also has the infinite bound vortex obtained
by a lateral integration of horseshoe vortices. The sane types of solu-
tions can be derived for supersonic flow and these provide more insight
into the nature of the supersonic solutions. The two-dimensional.source
potential is

——

.
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●

All of the disturbance created by the two-dimensional source.is
concentrated on the Mach planes from it, thus creating a potential junp
across these planes. The two-dimensional vortex potential is

Again all of the disturbance is concentrated on the Mach planes. There
is a potential jump across the Mach plsnes and also across the z = O
plane, the latter due to the discontinuity in the past history of the
fluid particles above and below the plane.
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SOME EQUIVALENT SINGULARITY DISTRIBUTIONS ‘-

Statement of the Problem .—

The first section of this chapter reviewed the basic singularities
which represent elements of lift, side force and volume in linearized
supersonic flow theory. It was noted that these singularitiesmay all
be obtained from the source singularitywith the aid of the simple proc-
esses of integration smd differentiation. The fact that the basic
singularities are so related will be shown to imply that certain dis-
tributions of singularities are equivalent, i..e.they produce the sane
flow field, at least outside of a finite region. tithe present section
an egpivalence theorem will be proved regarding constant strength dis-
tributions of sources, lifting and side force elements and vortex sheets.
Such a theorem will later prow useful in the study of interference
between distributions (Ch. IX B,C,F). Note that if the distribution
is part of a larger distribution (A,B) and if A is replaced by an equiva-
len~ distribute.o~Althen the drag ~f-(A1,B) is the s&e as t~t of-(A,B).

This follows from the fact that the substitution of Al for A does not

change the flow field at infinity (Ch. IV).

The distributions to be studied will be located on a cubic shell
which has two faces perpendicular to the f~ee stream direction. One
face of the cube will be covered by sources of const~t strength and
the opposite face by sinks of constant strength. @remaining fo”br
faces will be encircled by vortex lines of-constant strength. Two cases
may then be distinguished: (A) The source distribution is onaface
parallel to the free strewn; (B) The souce distribution is on a face
normal to the free stresm. These two cases are illustrated in Fig. 3b-1.
The source, sink and vortex distributions tie uniform and of constant
intensity as indicated. The vortex lines are continuous around the cube
with the circulation directed so as to induce in the interior of the
cube downwash velocities in case A and upstream velocities in case B.—

.—
P—

.-

. . .— e. —
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..—. . —

—

—
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z SOURCES
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Fig. 3b-1 ,..
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We shall now Trove the folloting theorem.

Theorem

In both cases A and B the perturbation velocities are zero every-
where outside the cubic shell. Inside tbe shell the downwash is constsnt
in case A (w = -k) snd the pressure is constant in case B (u = -k).

This theorem implies in particular that the source sink di~tribution,
say in case A, is equivalent to the negative of the vortex-line distribu-
tion in case A, in the sense that the associated flow fields are identical
outside the cube. Note that in case A the vortex distribution on the
frent and rear faces gives rise to a lifting force, whereas the vorticity
on the side faces produces no force. In case B the vorticity on the top
and bottom produces lift and the vorticity on the side faces produces
side force.

!I!hetheorem will first be proved by a geometrical argment and then
an alternative proof by analytical methods will be outlined.

Geometrical Proof of Theorem

Consider first case A. We shall construct a geometrical configu-
ration which corresponds to the distribution of singularities indicated
in Fig. 3b-1. This construction will proceed In several steps by succes-
sively cutting down configurations of infinite extent. The vortex dis-
tribution on the front face is equivalent to a distribution of lifting
elements of constant strength.

To begin with we shall assume the whole infinite plane containing
the front face to be covered by lifting elements. This msy be physically
realized by a cascade of doubly infinite (two-dimensional)wings of con-
stant angle of attack a and such that the vertical distance between two

m,neighboring wings is equal to the wing chord divided by M2
(Fig. 3b-2). In the limiting case of zero chord length the plane x = -Z
is then covered by vortex lines with the circulation (of strength k)
oriented as in Fig. ~-l. The value of the constant k is then k = 2cdJ.

The lift per unit area in the plane x = -5?is then 2a.&2. Stnce the
wings are spaced so as not to interfere with each other but still influence
every point downstream of the cascade, the flow field at any point P with
x > -X- be described as follows (Fig. 3b-2). The point P receives a
unit of downwash (-w = uU) frcm the wings A and B each. It also receives

a positive unit of pressure (-u=d/iF) 1 from A and a negative unit
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Fig. 3b-2
. —. .,._

of pressure fran B. The net pressure referred to p= received at P is
( )

then zero and the net downwash is -w = 2aU = k.
.-.

The cascade may now be terminated frcm above by a wedge of opening
angle 2a located in the plane z = E @th its exter.icmsurface parallel
to the free stresm direction (Fig. 3b-3). Actually this wedge corre- n.
spends to a source distribution of constant source strength k = 2aU~
If the cascade is removed for z > ~the flow field i.szero there since

.—

the wedge isolates this region from the rest of th& cascade and since ●

the exterior surface of the wedge is at zero .smgleaf attack. For z <Z
the flow field is unaffected
this consider a point P with
before to produce a downwash

A,

A2

B

by the introduction of the wedge. To see
Z <~ (Fig. 3b-3). Thg wing at B acts as
of -cf,IJat P: Only the point C on the wedge

.—

/
—/

— =.-

-L

Fig. 3b-3

——

affects the point P and this point C is already in &e downwash field -@
of wing A2. Thus the wedge turns the flow downward.only by u angle a ..- .——

—.
.

-..,—.

.. -
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the total downwash at P is again -2a,U. Conditions at P are the
in the infinite cascade.

EHmilarly the cascade may be terminated from below at z = -z by
placing a wedge there of opening angle -ti. This corresponds to a dis-
tribution of sii.ksof strength -k.

The cascade may then be cut down to finite width by placing planes
of zero thickness parallel to the plane at y = ~ and removing the part
of the wings for IYI > ~. Since no sidewash is present the flow field
is undisturbed by the introduction of these planes. Thus for x> -%,
lYl<~, lzl<Zthe doWnwashis-w=2c.dJ = k and the pressure is zero.
Outside this region & perturbation qpsntities are zero.

Finally one may restrict the flow field to the inside of a cube by
taking the negative of the above configuration and placing it at x = ~.

Thus the resulting flow field has constant downwash and zero pres-
sure inside the cube -%<x<X, -~<y<r, -Z<Z<Z. Outside this
cube the perturbation velocity is zero. Thus the front face is a cascade
of lifting wings at an angle of attack a, which bends the flow down. The
rear face is a cascade of wings of angle of attack -a which straighten

. the flow out again. The top and bottom faces consist of wedges whose
inside surfaces follow the direction of the flow which has been bent by
the cascade. These outside surfaces are parallel to the free stresm.

w (Note that for the wedge of negative angle the “interior” top surface is
directed downward at an angle 2a and the “exterior” bottom surface is
parallel to the flow.) Finally the side faces are planes that carry no
forces. For each such plane the downwash is -w = 2aU on the inside and
w = O on the outside. These planes sre then surfaces of constant vortic-
i.ty. However, the vorticity vector is paralJel to the free stream and
hence no force results.

Thus a geometric configuration (using a wedge of negative opening
angle) corresponding to case A has been constructed and the theorem has
been proved for this case.

The corresponding construction for case B will only be indicated.
The source distribution on the front face is obtained by placing wedges
there (Fig. 3b-4) of half-angle a = pk/2U.

m

c?

Z=-s

Fig. 3b-4
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At a

-u =

point P then the downwash is zero and the pressure is given by:

2aUl~== k.

.
—

--

By inserting planes of zero thickness at z = *Z, y = ~- and removing
4

the wedges outside these pianes the infinite configuration Ls cut down
to a configurationwith a finite cross section. Outside these planes the
flow is undisturbed. Inside these planes -u maintains its value __ —

/2dJ I/’ = k.
hence carry lift
sheets.

Finally the
at x = +X.

A geometric

—

These planes are then pressure discontinuities and - -
and side force respectively. They-”=e also vortex —

configurationmay be terminated by placing its nega~i~” -

configuration (again uEing wedges of negative op=ning
angles)-correspondingto case B“h.& thus ken constructed and tfi theorem
has been proved for case B.

.-

Analytice.1Proof of Theorem (Outline) .—

Caee A. Source-Distribution Face Parallel to Free Stresm
.—

—

?

Consider a cube with sowces of strength k on the top and -k on the
bottom, and with liftimg elements of strength pllkon the front face and v..
-pUk on the front face and -pUk on the rear face. On the side faces of
the cube there are no forces associated with the voz%ex lines parallel
to the flow direction; these are the trailing vortex system of the ele-

—

ments on the rear face.
.-—

In computing the potential due to the singularities on the cubic - ~“ ““
shell, various regions of the flow field “tieconside–redseparately; For
the region “aheadof the foremost Mach waves from the cube no disturb&nce “-
is possible in supersonic flow. Behind the cube, if the forward Mach
cone from a point incluks all of the shell, the potential at that point

—

may be found simply by integrating the total effect of the singularities
covering the shell. The potential due to individual unit source elements,
lifting elements, and side force elements are given-in Eqs. (3a-5), (3a-8),
and (3a-9). The strengths of the di~tributions considered in this case
are indicated in Fig. 3b-5. —

—
-. .. = —.

.. >. “,
.

—. .-

.-—.

. ... - .

—

—

—
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the entire shell is then
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(x-z)
z

H
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/ I

J

This, titer evaluating the integrals, equals zero.

(m-l)
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A third region of the flow field contains points slightly behind
and far to the side of the cube, where farward Mach cones from the points

include part, but not all, of the cube. For this region, wyes’ method(1)

csm be used to show that the potential again is zero. ThiS method iS
described in Ch. IVC. It requires that the distance from the cube to any
point P where the potential is to be computed must be large compared to
the dhensions of the cube. In addition, P must lie near the Mach cones
emanating from the singularities on the cube. P is.then a point at some
angle e (measuredfrom the horizontal plane) on a distant cylindrical
control surface surrounding the cubic shell. An “equivalent lineal dis-
tribution” of singularities is formed by finding the.singularity strength
intercepted from the cube by a set of parallel planes originating at
angle Elon the control cylinder and inclined at the Mach angle to the
free streem direction. The singularities intercepted by a given Mach
plane are lumped together at the Intersection of the Mach plane and the
axis of the cylinder, such that the total strength of the equivalent
distribution is equal to the total strength of the original distribution.
After determining the strength (h) of the equivalent lineal distribution
which represents the cubic shell for a fixed 6, the effect of all those
singularitieswhich influence the flow field at P can be summed. Hayes
writes the expression for h as .: .-—

h=+f -gzsin O-~cos O (3b-2)
— .... ..-

where f is the source strength (per unit length), gz/B the circulation

strength (per unit length) of -theliftin@.elements,~d gy/P the circu-
‘--lationstrength of the side force elements.

—

Figure 3b-6 indicates the notation to be used in describing the
geometry of the intersections of the Mach planes with planes containing
the x,y,z axes. The Mach plane is inclined to the axis of the control

cylinder at the Mach angle v = sin-l(l/M) and it is tangent to a cross-
section of the cylinder at angle 0. The tiace of the Mach plane “ina
horizontal (x-y) plane is inclined to a normal to the flow direction at _.
angle 5, where tan 5 = cot N cos 8 = ~ cos 0. The trace of the Mach-
plane in a vertical (x-z) plane forms an tigle uwith a line parallel
to the z-axis, where tan a = p sin El. .-

—

—.——
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#lTPACE OF MACH PLANE ..

IN THE X-Z PLAhf.4=P A

Y

u’
/

I

Fig. 3b-6

With this brief description of Hayes’ procedure in mind, an equiva-
lent lineal distribution of singularities is now to be computed for the
specific case of the cubic shell.described previously. Figure 3b-7a
shows the intersections of two parallel Mach planes with the shell; the
Mach plsmes are assumed to be separated by an infinitesimal distance.
The case illustrated shows only three faces of the cube intersected by
the Wch planes since the procedure would be the sane if four faces were
affected. In order to better define the geometry and ndtation, Fig. ~-7b
shows the cubic shell as though it were cut along the corner edges and
flattened out in one plane.
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lumped along a length &x of the axis. The total source

NACA TM 1421
-- .——

SIDE

TOP

, (SO URCJ3

SIDE

(Sims)

6’OTTOM

x_

(-LIFT]

REAR

.-
——

—.

planes must be “ j _
strength is the

product of the strength per unit area (k) snd the area interc~pted from
the top surface of the cube by the Mach planes: ,

‘=k=i%Th’=k’:’’m’-2se&e&(3b-~)

. .—.

(The negative sign is inserted because e is in the s&ond quadrant for --
the exsmple shown, but f is positive.) The total lifting element strength
is pUk multiplied by the area intercepted from the front face:

—

2 = pm ~06 :1- ~ dJ13= ~~gl-azltan 01

=Itanel .-puk
xl &c

= pm
j32sine cos e

(~-3b) -.
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Again, a negative sign is inserted because cos e is negative while Z
should be positive. There are
the strength of the equival.ent
must be remembered that ~, gz

multiplied by f!;i.e.,

g= =

no forces on the side faces. In ccmputing
lineal distribution from Eq. (3b-2) it
frcm that formula are circulation strengths

Then

h = +f -gz sine- ~ cos e

-1’q dx p( -pwl ax
-—

‘pcose
)

sin O=O
PU ~2sin e cos e

(3b-4)

That is, the net singularity strength is zero. This is true for all
angles e, and similar calculations show that it is also true for every
station x along the cylinder sxis. Therefore, the velocity potential
is zero at all distant points for which Hsyes’ method is applicable.

There remains to find the velocity potential in the neighborhood
of the shell. The cube may be subdivided into smaller cubic shells,
each similar to the original. Singularities on interfaces of adjoining
shells then cancel so the net singularity distribution is unchanged.
Those shells which lie behind and outside the forward Mach cone from
q Point cmot itilUenCe the velocity potential at that point. It
was shown earlier that those shells which lie completely inside the for-
ward Mach cone from the point also do not influence the potential there.
Therefore, only those shells lying along the forward Mach cone need be
considered. However, these may be further subdivided into cubic shells
of elementary proportions so that the distance from the ,pointto any
one of the shells is very large compared to the dimensions of that shell.
Then the analysis based on Hsyes’ procedure shows that these shells do
not contribute to the velocity potential at the point either. This indi-
cates that the velocity potential is zero everywhere outside the cubic
shell.

To find the velocity perturbations inside the shell, again consider
it divided into sm&.er shells. None of these except the one containing
the point P can influence the potential at P according to the preceding
analysis. Therefore, ald of the small shells located more than a dis-
tance e ahead of P can be removed without affecting the potential at P.
The forward Mach cone from P then intersects only the front face of the
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remaining part of the original cube, so tjhat,effectively, P is aware
only of an infinite distribution of lifting element-s. Since this result
is independent of the location of P inside the original.cubic shell, the .
downwas~ inside the shell.must be constsmt.

Case B. Source Distribution Face Normal to the Free Stream

Consider now a cube with lifting elements of s~trengthpUk on
top face and -@k on the bottom face, with side force elements of

-.

the

st~ength pUk, ~pUk on the side faces; and with sources of strength ~2k
on the front face and -p2k on the rear face.

z
7s

‘SIDE FORC.E

ELEMEN72’@@

—

Fig. 3b-8 -.

- .

First, the potential ahead of the foremost Mach waves of the cube
is, of course, zero. At a downstream point whose forward Mach cone
includes all of the sources and lifting elements.th.e.Potentia~is

—
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r (’-’0)% dycl

(Y- Y)

(’-’0)’% W(I

J=+YO)2+(z+z,2]/(x-%)2-,2[y-yo)2+(Z+q +

Zlz
(y+y) H (’-’0)% d%

-z
[

-z(y+y)2+(z- 1ZO)q(x-x+ qy+w+(z - ..)2] +

J-YJ
qY-Yo)2+(z-zo)q I

Csrrying out the integration, it is

-’1

found that

$.-*- for-~<y

. $=0 Elsewhere



.

24
—

NACA!Ill14ZL
.
— .

By Hayes’ procedure, when forward Mach cones fr-m distant point; - - –
include only pqrt of the singularities,the potential at those points
is the ssme as would be contributed by a lineal distribution whose
strength, h, can be ccmputed in the manner described preciously. For

___-.
Mach pla&s- intersecting the cube in the same location illustrated for
another case in Fig. 3b-7, one finds that

xl dx Xldx:-l
f=-k

xl dx
s = -pm

sin e cos 0’. p sin8’
= -pm

p Cos e
(3b-6)

.>

and SO
.- —;-—

(3b-7)—

Thus, the potential due to the cubic shellis zero at--alldistant points ... ~
of the flow field which lie near the Mach cone of the-shell. — *. .._

In the neighborhood of the cube,
—

the s&me arguments used for tll–
first cubic shell show that the perturbation velociti~s for this case are- .—

k
zero there also. Therefore, the perturbation velocities are proved to
be zero in every region of the flow field eicternalto the cubic shell.

—
To find the potential at a point insi~e the shefi, ‘tl%shell is sub-

divided as before into smaller shells, each similar t~ the original. me .. ~
analysis just completed shows that the velocity pert~bations at P cannot
be influenced by any of these shells except the one cgntai~ng P. There-
fore, all of the small shells located more :~hana distance e ahead of P
can be removed. The net singularity strength intersected by the forward ““-- ~
Mach cone from P then includek only source=bn the frgnt face of the
remaining group of cubes. Effectively, then, condititis titP are the—
ssme as behind an infinite distribution of sources of-constant intensity.
This result is independent of the location of P inside the cubic shell,
so the pressure must be constant inside the she~ and the potential is
of the form # = CX.

—. —

.-

.

— —.. -.. .
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CHAYTERIv. THE EVALUATION OF DRAG ,—

A. TEE “CLOSE” AND TEE “DISTANT” VIEWPOINTS—

The non-tiscous drag for a wing and body moving at supersonic speeds

may be obtained from two different points of view(1), using linearized
theory. First, the drag can be evaluated by integrating the local pres-
sure times frontal srea over the wing smd body surfaces. Second, the
drag can be evaluated from momentum or energy considerations involving
the flow field at a great distance from the aircrsft. These two pro-
cedures are actually variations of the ssme basic method.

In the latter case part of the drag due to lift is associated with
the production of kinetic energy in the trailing vortex system, and is
called “vortex drag.” This drag is identical with that producedby the
ssme spanwise lift distribution in an incompressible flow, (frequently
called “induced drag”).

The remainder of the drag due to lift and all of the drag due to
thickness is associated with the production of energy near the surface
of a downstream Mach cone whose vertex is in or near the aircraft. This
is called wave drag, and the associated energy is half kinetic and haU

potential(l).

The wave drag plus the vortex drag is eqyal.to the drag evaluated
at the wing and body surfaces by the first method. (It may be necesssry
to retain nonlinear terms in the expression for pressure coefficient to
get this agreement.)

The momentum theorem is utilized in both of the above methods but
different “control surfaces” are used. In the first case the control
surface is close to the aircraft surface, but in the second case the

control surface is a distant one. For exsmple Hayes(’) uses a circular
cylinder with axis passing through the aircraft and parallel to the free
stresm direction. The radius of the cylinder is chosen to be very large
compared to the aircrsft dimensions since this simplifies the’calculations.

The wave drag of the aircrsft is then evaluated from the rate at
which momentum (in the free stream direction) is carried across the sur-
face of the cylinder. (If the control surface had been chosen as a sur-
face containing stresml.inesinstead of a perfect cylinder, then the wave
drag would have appeared as pressure on the stresml.inesurface.)

The cylindrical control surface is closed far downstream by a plane
normal to the flow direction. The vortex drag is then determined, as in
incompressible flow, by the rate at which the kinetic energy of the
trailing vortex system passes through this plsme, or alternatively
through momentum and pressure considerations.
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—
B. GENZRAL MOMENTUM THEOREM FOR EVALUATION OF DRAG

-.
— ...

In the present section a momentum integral for the drag, as given
by linearized theory, will be derived (Eq6”.kb-33,34). The drag will.be “
given as em integral over an arbitrary control surface encloeing the
solid. The integrand is a quadratic expression in the velocity compo-
nents as given by linearized theory.

First a more general momentum integral will.be considered. Consider
—

a control surface S enclosing a solid (Fig. 4b-1). A surface element

on S of are: dS wi~ be represented by its outward n&mal ti+wher~the

length of dn is eqti to the area of the swace element. ThW m = (ds)~

if %is the outward normal of unit length. Let the hydrodynamtcal stress .

—.=---
-.

Fig. 4b-1 _. . ,, .-

!...

. . . . =----
.7.

tensor be denoted by a, and let I be the region insi~ S ad II the
region outside S. Then

.T=a~ = Force

If a system of

sented by its three

exerted by II on I“across””surfaceelement

:“+
coordinates xl, X2, X3 is chosen dn may be

(Lb-l)

.

repre-

components (dn)i and & by a 3x3 mtrix aij. The

above equation may then be written

3

z

——.
f~ = (Odfi)i = aij(dn)j (4b-2)

.— .
j=l —.- .

—

-.

—

—

where (a d?)i is the ith ccmponent of the force.
—

.-
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For a
Surep and

where I is

In

or

is
of

non-viscous fluid
the stress tensor

o
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the only hydrodynsmical force is the pres-
is

=-pI=-
()
P~ij (4b-3)

the identity tensor whose matrix is the I@onecker delta bi~.

this case the force across the element is

+
f = -P(I d%) = -p & (4b-4)

fi = ‘p(dn)i

The hydrodynanical mcmentum eqwtion states that the stress tensor
balanced by flow-of-momentum tensor. (This is actually a restatement
Newton’s law that force = (mass) times (acceleration).) To define

the flow-of-momentum tensor we first introduce the concept of a dyadic

product of two vectors. Let ~ and %be two vectors with components ai()
and (hi). The dyadic product is then the tensor whose ij component

(~.‘~)i~ iS aibj, i.e.

+
a. (%=ai. %)

Note that if ? is my vector then

*
where % . c is the ordinary dot product.

(4b-6)

—

(4b-5)

The flow of momentum tenso~ is then the dyadic product of pa
(mmnentwn per unit volume) and q velocity:

Flow-of-momentum tensor = pa .; (4b-7)
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Its physical interpretationmay be seen by appl.ying~this

NACA ‘IM1421

.-

tensor to the _ - .

(P:.;)~=d:. &) =~Momentumtransported through dS per unit time.

—.-.

.. ..- <

— *

The basic

which does not

manentum equation

enclose a body is

.
for stationary

then

.

-.—
—

flow for a

This is analogous to the law of conservation of mass”which

f
PG”~=o

‘1

.—
(@-j)”: ‘-

-- .-

surface S1 “- _
—

.—

(4b-9)

states that

—
.—

●

Consider now the composite surface consisting of the surface S in

Fig. 4b-1 and the body surface Z. Let & denote no~ls on Z which point
outwards with respect to the body (i.e. into region 1). From the defini-
tion of the stress tensor a

-.-.
+
F = Total force exerted by fluid on body =

f
a ti+ (4b-11)

z

Since the flow through Z is zero one obtains by applying Eq. (kb-9) to
the cmnposite surface S1 = S +X —<. -..;

The minus

surface Z
region I.

Js ds d~

sign in the last term is due to the convention that on the

the quantity & denotes the inward normal with respect to the
Comparing Eqs. (4b-~) and (4b-12) one obtains

—

---
—.
-.

-.
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(4b-13)

This is the fundsmental mmentum formula which gives the total hydro-

dynsmical force on the solid as an integral over a control surface

enclosing the solid.

Note that in Eq. (4b-11), the force is given by an integral of the
stresses on the body surface. This is the “close” point of view for
evaluating the force. Eq. (&b-13) shows how the ssme force may be evalu-
ated from the distant point of view.

A slight modification of Eq. (4b-13) will be needed later. Denote
the flow quantities at infinity as follows

3, P} P, u at ~inity = $? Po) ??@ “O.,respectively (4b-14)

.

The difference between a flow qyantity and its value at infinity will
●

be denoted by a “prime.” Thus

From the continuity eq~tion (Eq. 4b-10) it follows that

Furthermore, since cro= Constsnt

- Subtracting Eqs.

.

J Cfoti?bo
s

(4b-16a, b) from Eq. (4b-13) one obtains

$=-
J

(Pt’ ●
?&& +

I
0’ d%

“s Is

.-

(4b-16a) —

(4b-16b)

(4b-17a)
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where, for a non-viscous fluid,

J fU’di?=- p’d!?
s s

(hb-lp)

—

This is the fundamental mamentum formula in terms uf perturbation - —

quantities. Note that the latter are not assumed t-obe small.

The drag is the component of ~ in the free stresm direction. We
shall take this direction as the x-direction and use the following
notation.

—

: =3i, t= (U,v,w), & = (U’,v’,w’) (4b-18)

where
.,.

u = u + u’, v’ = v, WI = w
.— ..—

From Eq. (4b-17a) then follows the fundamentalmome”ntumformula f~””drag(”
—

Drag = F.c- rpu’; . d+?.
!

a’ k+ (kb-lg)
s 3

The momentum integrals may be further simplified for special choices
of the control surface S, in particular by letting S recede to infinity.
However, we shall first derive an approximate form of the drag formula,
valid within linearized theory. In the foLlowing section this linearized
formula wilJ.then be specializedto a special infinitely distant control

(surface method of Hayes(1)),

Inviscid Second-Order Drag
—

—.-

It win be shown below that for a thin or slender body the largest
contribution to the drag may be evaluated by an integral of a quadratic
expression of the linearized perturbation velocities:. It iS us-
stated that the drag is of second order. Eowever, it should be remembered
that the values of the perturbation velocities are computed from first-
order (linearized)theory. The result is–a formula for drag according
to first-order theory. The te”im“second-orderdrag” refers to the fact

.—

.-

—

.-

—
--

—

.—

.—.—

“

●

. .

:

.:

.

-. .—



NACA TM 1421 31

.
the integrand is qudratic in u’, v’ and w’ and hence of second order
if u’, v’ and w’ are themselves of first order. Furthermore, the second-
order correction to u’, v’. and w’ will contribute nothing to the second-
order expression for drag. The final formula is given by Eqs. (4b-33,34)
and the reader interested only in the final result may skip the deriva-
tion now presented below.

We shall first assume non-viscous flow, so that the stress tensor
is given byEq. (kb-s). Furthermore, we shall assume that the solid
is characterizedby a parsmeter e, which is small, e.g. the fineness or
thickness ratio. We shall.furthermore assume that the flow quantities
may be expressed by power series in e:

u= U+EU1+C2U2 +... (4b-20)

v= e-q+++...
w= %Ewl+ E 2+ . ● .

P =po+epl+e 2p2+...

P =Po+Ql+G2p2+. . .

Such an expansion is valid at a distance from the body. It should
be remembered, however, that in slender body theory, terms involving
log e are of importance very near the body.

The coefficients of e are the first order terms and are given by

linearized theory. The coefficient: of ~2 are the second order terms,
etc. The lowest order term in the ewression for the drag w“illnow be
found using the isentropic pressure-density relation and Bernoulli’s
law.

From isentropy it follows that density is a function of pressure
alone. One defines

()dp~ constant
.

where a is the isentropic speed of
.

P
1=po+

(
-P
a.

=a 2

entropy

sound. Then

)
-P. + . ● ●

(4b-21)
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from which then follows
-. “-.

.

PI

pl=~

be written

d(uz+vz+wz)+u=o

(4b-22) “ =

— ..-. --- .

Bernoulld ‘s law may

2 —

where —

. .
.-

—

—
or

+U)2+V2+W 2 +-~=uz -:
—.

(h.b-23) -(u’
.- —=!

--- —

“=
using Eq. (kb-21) P be expanded to second order I

●

P~
J

dp‘

P’po+—
~02

1
(4b-24)

-..—

—

Expanding the terms in Eq. (4b-23) to second o~der o@ obtains

lineari~ed Eernoulli’s — ‘Collecting the terms of order e one
law

finds the

pl + poulu = o (4b-25)
.

.
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Comparing with Eq. (hb-22) one sees that

uu~
pl = -p. —

ao2

The terms of order =2 yield the following expression for p2

U12 + VI2+W1 2 ,0U,%2
POUU2 + Po +p2- p =0

2

(4b-26)
.—

(4b-27)

where Eq. (4b-25) has been used and

Mu=—
a.

In the momentum formula, Eq. (4b-17), the stress and momentum flow
tensors may be ccmbined to form a tensor A

A=-p~’.~-p’I

Using Eqs. (kb-20, 25, 26) one may evaluate AU

All = -pu’(U+ U’) - p’

( )(: -e poulu + pl - E2 pouzu +pl~lu + POU12
)

+ P.2

=
(

-E2po UU2 - M%12 + U12 - UU2 -

Finally

U12 + VI2+W1 2 @2

2 )
+—

2

Sim.ilexly

A12 = -@’V’ & -~ppou~vl

(4b-28)

(4b-29)



-.

—

34 NACA TM 1421
.-.—.—

.-

*13 = -P”’w’ s -~2poulwl -

.

(4b-30) ~1

.—.

( )Since only the first row All, A12, A13 enters in the drag computation

we have proved the following: —

1. The dominant term in the drag formula is o~.second order ifie ““ -

2. The integrand in the drag formula is, to seco~ order, a second
degree polynomial in the first order velocity perttibations. The velocity -
perturbations of second order, or pressure and density perturbations of
second order, do not enter into this expression. _

.——

Thus while drag”is of second order, i% may be cbmputed on tke basis”””--
of first order theory (linearizedtheory). On the other hand, one may
easily check from the above expressions that in general the lift has a
first order term. Furthermore to compute lift to second order one needs __
to know U2, that is, u to second order.

—.
—.

In the remainder of this report we shall only be concerned with the
drag as given by linearized theo~. It is then convenient to introduce
a change of notation.
velocity perturbation;

all, Cvl,

Furthermore a velocity

The above results

We shall let u, v, w stand for the linearized
in other words

al are replaced by u, v, w (4b-31)

potential ~ will be introduced such that

Grad $ =u, v, “w
-.

(4b-32)
-- ..T—.

may then be summarized as follows. The drag to-.—.
-.—

—

second order is given by the formula

where S = Control surface enclositi the

(Lb-33)

-...

.—

.

. ..—
;

.

.

.

,:. --
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~#u2+#+w2, ~2. M2-lAU = +Po a ( )
(4b-34)

A12 = -~oUV

A13 = -poUW

and u, v and w are the ,componentsof the perturbation velocity given by
linearized theory.

c. HAYES METHOD FOR DRAG EVALUATION—

The method developed by Hayes in Ref. 1 consists in applying the
drag formula Eq. (4b-33) to a special control sux’face,a truncated cir-
cular cylinder, surrounding the body snd in considering the limiting
case when the control surface recedes to infinity. The general momentun
integral for the drag then assumes a simplified form. (This results in
certain simplifications in the integrand.) Furthermore, if the body is
represented by singularities (sources, lifting elements, etc.) as dis-
cussed in Ch. III, the velocities at large distances may be represented
very simply in terms of the strength of the singularitiess.As a result
the drag may also be represented as an integral over the singularities
(distribution of source strength, etc.). This result of Hayes’ gener-

‘(alizes a previous result by von K&man 7) for a body of revolution.

First a somewhat detailed demonstration of the method of Hayes will
be given for the case of a lineal source distribution. This part may
be skipped by a reader not interested in mathematical details. Then the
results of Hayes and related results will be stated in intuitive terms
for general three-dimensional distribution of sources, lifting elements
and side-force elements. Detailed proofs will not be given. However,
the results may be provedby methods closely analogous to the method
exhibited for the case of a lineal source distribution.

x=

Hayes Method for Lineal Source Distribution

We shall consider a distribution of sources along the x-axis between
Oandx=L. The corresponding solid ig then a body of revolution.
source strength will be denoted by f. It will be assumed that

f(0) =0, f(L) =0 (4C-1)
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These assumptions lead to certain restrictions on the body shape.
Let the radius of the body be r(x). The cross sectional area S(x) is

then tir2(x). Since f(x) =U S’(x), f(0) means that r(0) . r’(0) =0.

This is fulfilled if r -xn, n> 1/2 near the origin~’ In partic~ar,
f(0) is equal to zero if the body starts in a point with finite slope,
i.e. rmxnearx=O. The analogous condition at x= L insures f(L) =
In addition, f(L) = O if the body ends smoothly in a cylinder with con-
stant radius, i.e. if S(x) = Constant for x ~ L and S’(x) is continuous
and hence z-e”roat x . L. It will.be indicated in t% proof below why
the restrictions on f are necessary.

.-.

Expres-sionfor Velocities

The potential due to the source distribution is-then

where r2 .

using
Eq. (4c-2)

..—.

.. ....

0.

..-

-r-

(4c-2)

—
—

y2+ Z2. For x - ~r~L the up~r limit ~y be replaced by L.

—

.-

*-

.

-

.
—
-=—

..

.. . s
r-

the condition f(0) = O one finds..bypartial integration of
.

and differentiationthat the perturbation.velocitiesare

“‘x=-~“~x-’r* ‘-
.—

.*-.--. .—

(kc-~a) ,

J
x-J3r

@r’&
_ (X- &)f’(~)d~ (4c-3b) ,

2fir o Y(X - 5)2 - p.?r2_” —.
..-

In Eqs. (4c-3), the upper lhit is replaced-by L for x - pr Z L.

We shall introduce the notation

.—
(4C-4) __ “

—
Then tg = 1 on the downstream Mach cone fronix = g an&OSt S 1 inside

this Mach cone. For x - @~L one may also write tk_velocity components “
as ...

.-
.

- . -.
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.

Fig.

by a

“x‘*LL””F-“2- ‘+l-’’X’X-““
-3/2

;fi JoL f(~)(x - E)-2(1 - tgp)=— d~

‘r ‘2 LL’@x - ‘)2 - “r~-’’2r2r “

J-P L -3/2
=—

‘lt ~
f(~)(x - E)-’tg(l - tE’)

I@yes’ Control Surface

(4c-5a)

(4c-5b)

Following Hayes we now introduce the control
4C-1. It consists of a circular cylinder of

front disc x = Constant< O and a rear disc x = xl> L. The drag

surface shown In
radius .1, truncated

FoRWARD
DISC

/

x

-Y ~ZARDISC

Fig. 4c-1
.

.
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integral (Eq. 4b-33) will.be evaluated for this control s~face as rl

and xl tend to iru?inity. The ratio between xl and rl will.be detemnined

later in such a way that the contribution of the rear disc to the drsg
will vanish in the limit.

.

.-

Contribution of Rear Disc

According to Eqs. (4b-33,34) the contribution of the rear <isc ~o
the drag is

as a

Then

.—

—
.—

w

.

.=

.-

—-

.=
—

(4c-6)
u .—

The velocity components may be evaluated as follows. Write f(k)
difference of two positive functions

f(g) =f+(g) -f-(g), f+(~), f-(~l”~o :(4C-7) -:.

by the

& =

.
mean value theorem end Eqs. (4c-5a,b)

-...:. . ..
—.

< L.~> ~’ A similar expression isvalid for @r. Note that—
in Eq. (4c-5) the continuous source distribution is replaced by a posi-
tive source at E3 and a sink at ~2. Howe~r.} ~3 md ~2 depend on x .-
and r.

As is easily seen

--
.

—. —

i =2,3 .-
(4C-9) .—. .-

-.
— .

—

r—

-.

.
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Hence, replacing g3 and E2 by L increases the absolute magnitude of

both terms in Eq. (4c-8). Hence, on the rear disc x = xl, O<r<rl,

2$2A

‘X2 < (xl - L~(l - t~2)’

where A is independent of xl and rl, and

( 4C-10 )

If one puts y = 1 - tL2, then &f = -’tL dtL = -tL .

Hence
2P dr/(xl - ‘).

(4c-11)

( )2where yl= l-l-cl = p~l -

Equation (4c-12)

#

may he written

f

1
rp2@x2dr<

0

~12 and el is explained

~L
(Xl -BL)2~12 r12e2

(4c-12)

in Fig. 4c-1.

(4C-13)

\- 1-

X1 for rl and xl sufficiently large;where C is independent of rl and

e is explained in Fig. 4c-1. The fact that xl

as r-m has been used above.
/(x, - L)+l, .p.-+l

It is then clesr that if e is constant

or If e = r-a, a< 1, then the integrand in Eq. (4c-13) tends to zero

as r~~. A similar estimate may be shown for
J’
r#r2dx. A comparison

with Eq. (4c-6) shows that:
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--

Contribution”of rear disc to drag is zero-even if ~ decreases

—.
.-

.

as r increases. However, e should decrease more slowl.ythan r=l.
.

Since the distance EC is of the order a it follows that this

distsmce becomes infinite in the limit.

Contribution of Cylindrical Part
.

— ——

Since the contribution
identical~ zero it follows

contribution comes from the
scribed above. Thus

of the forward disc to ~he drag integral is
then in the limit rl, xl-m the entire drag

cylindrical part, provided e varies as pre-

D = Limit D2””

where Dg, the contribution of the cylindrical part,

D2 = -po2mr1
f

‘+prl’ @x@r dx’
f3rT “-

-L

—.

—
(4c-14)_—

-..-

is
—

—
s

+
that the radial component Ah of the vector Al in the.drag formula(Note

Eq. (hb-34) is -po@x@r.) In the above equation 1/1 . e has been replaced

by 1 + e which may be done without loss of generali~~.

To evaluate D2, we write Eq. (4c-3a,b) in the following fomn

—. .

(4c-L6)

where xl . x - j3r1. —
—. .“

—.

—

—

.

—- -—
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The upper limit is XI for x’ ~ L and L for x’ ‘2L. Hence

- g2 + 2f3rl

+ 2pr1

(4C-17)

within the

I

Limiting Case for Infinitely Distant Control Surface

We shall now evaluate D2 as rl~=. TIE three ratios

second bracket all tend to unity as rl-rn and may hence be neglected

in the limit. Note that this approximation implies

Furthermore, applying the
that

{**“ =f“,
1

fir
(4c-18a)

2

mane approximateion to Eq. (4c-16) one obtains

L - ‘ML (4c-18b )

/
@r snd @x both vsnish as 1 ~S1. Their ratio, however, is given by the

above equation. The corresponding relation with @r replaced by @y is

exact for two-dimensional flow. Thus the flow is approximately two-
dimensional at large distances near the Mach cone from the leading edge

( )
e small, i.e. t~ almost unity Por O ~ ~ ~ L .

Hence

D = LMt D2 =&
411

where

(4c-19a)
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The domain of integration

section for x’ = Constant

O~x’~Lsmd the square

be the integral where O S

.—

—

NACA TM 1421
— .<-

is-a ~gion in x’, ~1, g2 space wbse crOss- .
.

isthesquare O<51<x~ ,0< E2<x’ for
--
—

0 ~ 61, E2 ~ L for L ~ x’ ~-~erl. Let 11 .
—

y<L and 12 the integral over the domain _,__ ~

LSy S Perl. Since the integrand is symnetric in El s.ndE2, half its

value is obtained by integrating

52 plane (i.e. ~1~~2) ~ shown

$
4

only over the triangle ABC in the El,

in Fig. 4c-2. In e~uati~ 11 over —

its dcxnain
at xl = o)
For %1, ~2

x’

Fig. &c.2

(a truncated triangular cylinder with
we shall first integrate along a line
fixed this line is inside the pyrsmid

.
.-.—.

-+
—

base at x = L and vertex
psrallel to the y-axis.

~lmay vary inside the triangle between O and ~2, and for

between O and L may be chosen. Hence 11 maybe written._
, .— .— .

The integral 12 is (domain is triangular cylinder)

(4C-20)

.-

.

(4c-21) ,.
. .
—--

,_—

. .
. .
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Interchanging the order as above one obtains

1=11+12=2 ;’LJ”2 f(El)f,(52)~E~r’l+;q-log ]% .,2

(4c-22)

Here C is a constant

J

L
f’(~)d~ =

o

and it has been introduced under the assumption that

O, which, since f(0) =Omeans f(L) =0

(cf. Eq. 4c-1).
(
Note that the limit of integration for 51 may be

replaced by L if the factor 2 is omitted.
)

Now

‘fI’=l-El - E.2+q(em’l-Q(i3=1 -:2)
= -log(EZ-El)+k3 c

(&c-23)

Hence if one chooses C = 4~Er1, the second term will tend to log 1 =10

as rljrn. Note that for this it is essential that erlfirn as rl-~

(cf. pg.m6). In other words the simplicity of the proof de~nds on
the fact that e~O as rla~ (cf. Eqs. 4c-18). On the other hand e
may not tend to zero so fast that erl remains bounded. In this case the

above proof would be invalidated. Actually a drag contribution would
come frcm the rear disc in that case.

By combining the Eqs. 4c-19a, 22, 23 one obtains tke final drag
formula

(4c-24)

.-
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This is von K&m&’s drag formula ”for.alineal source distribution - -

suchthat f(0) = f-(L)= O. It has been derived above by the method of .

Z15Qs2”This derivation has the advantage-that it msj be extended .-..— -—.

immediately to cases of a more general distribution of singularities~ .—

Such generalizationswill now be discussed. .-- -. ,
.-.

General Three-Dimensional Source Distributions -

We shall now consider a more general case of a spatial distribution
of sources. It will still be assumed that no lifting or side force ele-
ments are present. The source stre”@h will be denoted by f(x,y,z).
It will be assumed that f = O outside a certain finite region V. A
special case is a planar distribution, say in the plane z = O in which
case f(x,y,z) = f2(x,y)5(z). Another special case is the lineal distri-

bution on the x-axis which was discussed above. In this case
f(x,y,z) =fl(x)b(r). It will be shown below how in a certain sense the

drag evaluation for the general three-dimensional case may be reduced-
to a consideration of certain equivalent lineal distributions. In the
course of this discussion certain restrictions on f(x,y,z) will be made
in addition to the requirement that it vanish outside a finite region.

.x

--

.

.

Consider a line in the @resmwise direction pas~ing through V. The
position of the line which wilJ.be taken as the x-sxls is actually arbi-
trary, but for practical purposes it wi~ be assumed that it is “well
centered.” This is, of course, a scsnewhatvague requirement. However,
if for example f has rotational symmetry, the x-axis will be its axis
of symmetry. On the x-axis choose as origin a point, 0, whose downstream
Mach cone contains“V. For convenience choose this point as far down-
stream as possible. Also choose the point, “L,for convenience as far
upstream as possible, whose upstresm Mach cone contains V. .m eqy.ivalent ~
requirement is that the downstream Mach co= from-L is contained within
the downstream Mach cones from every point in V. Let the value of x at
point L be L. Thus the downstream Mach cone from x = O and the upstream
Mach cone from x = L touch but do not penetrate V. We now introduce a
control surface and define e and cl as in the lineal case (cf. Fig. 4c-1).

This is shown in Fig. 4c-3. It will.be asmimed that rl and xl tend to

infinity as described in discussion of the lineal case.

.

...+- .

—
—.. ——
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Fig. 4c-3: Hayes control surface in three-dimensional space ~

That is as xl and rl tend to infinity e and 61 will tend to zero. In

that sense the line AC will come arbitrarily near the Mach cone from the
origin. On the other hand e and el will tend to zero slower than l/rl

so that the line AC becomes infinitely long as rl-rn.

By the ssme methods that were used in the lineal case, it may be
easily seen that the contribution of the rear disc, x = xl, becomes zero

in the limit. All the drag thus comes from a portion on the cylindrical
surface arbitrarily near the Mach cone from the origin and is hence pure
wave dreg.

To evaluate the drag contribution from the cylindrical surface we
introduce cylindrical coordinates x, r, e where

x = r cos e, z=rsin’e (4c-25)

.

.
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Eulde=eo+

NACA TM 14=1 - ““
—

--
drag contribution of a strip on the cylinder between f3= -El.

.

AO be AZ?. We define
.

dD—=
de

Drag contributionper unit angle = lim ~ ae Ae+O (4c-26a) =

J
23’(

D = Total drsg = Q de
o de

(4c-26b) -

—. . ..—.

Consider now a fixed meridian plsme 0
( )

= 130,and a point P = ~,rl,eo

on the cylinder between A and C (Fig. 4c-3). The potential @(P) depends
on the contribution from all sources inside the upstresm Mach cone from P.

—

The contributionfrom a source at Q = (5,q,~) is Proportional to the
source strength f(Q) and inversely proportional to the hyperbolic dis- ‘“
tance rh(p,Q) between P and Q where —

r — 1

1%2=(%-~)2- ~2(woseo - V)*+(n ‘~ eo - 2L) ] (4c-27) .

..—

This hyperbolic distance is constant on hyperboloids of revolution with ‘- .
r= rl, e . 00 as axis. Consider now the sources between two such hyper-

boloids which intersect the x-axis at x = ~ and x = ~ + d~. To evaluate
the contributionto @(P) of these sources one may transfer their total
source strength to the axis. In this way the distribution in V is
replaced by an equivalent lineal distribution i.e. by g.nequivalent body
of revolution. So far tlxk lineal distribution depends on ~ and rl as

well as O..

Consider.now, still for fixed 13’=O., the limit as rl-m. Then

the hyperboloids may be replaced by Mach pl-mes which intersect the ~
meridian plane 0 = El.orthogonally along Mac_hlines. .Note that for this

i-tis necessary that as rlew any point between A andjC tames arbi-

trarily near the downstream Mach cone from the origin~ti the sense
described above. The source strength between two such-neighboringpl~es

-.
-- —

.- .

.

—

.
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.

f

/’

.

.
Fig. 4c-4;

may then be transferred to the

Evaluat iorlof @(P)

x-axis as above. However, in this biting
case the resulting equivalent body of revolution depends at most on eo.
It becomes independent of rl and ~. The corresponding lineal source

distribution will be denoted by f(x;eo). A consequence of the independ-
ence of X. and rl is that f(x;e) may be used for computing @r and @x as

welJ.as # at P. In general.it may not be used for ccmputing de. Clearly

de is zero for a lineal distribution, whereas the @e resulting from the

original volume distribution is not. On the other hand @e is not needed

for drag evaluation on the cylindrical surface.

Since @r and @x may be computed from the equivalent body of revolu-

tion for fixed e it follows that dD/de may be computed in exactly the
ssme way as the drag of a body of revolution was computed. The result

. will differ frcm Eq. (4c-24) only by a factor %. Hence we have proved
the fofiowing: The drag D of a volume distribution of sources of
strength f(~,q,~) is given by the formulas

.
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J’
2Jt

D= ~ de
o

—

(4c-28R) -

__ .-m

f(~;(3)d~=
JJ’

f(Q)dQ

v(~,e)

(4c-28b)

—

(4c-28c)

where’V(E,f30)is the region contained between two Mach
dicular *O e = e. and intersecting the x-axis at x = g

This result was obtained by Hayes in””Ref.”1. It is thus seen how
Hayes’ derivation of von K&n&I’s drag formula for bodies .. revolution
admits an easy generalization to the general three-dimensional case.

planes perpen-
andx= ;+d&.

=: -..

This proof obviously presupposes the following requirement on the
strength distribution f(Q) in addition to the requirement that it vS.nish-
outside a finite volume: f(Q) must be such that for each e f(x;f3)sat-
isfies the ssme requirements as f(x) in the lineal case. In particular
for each 9: f(O;O) =f(L;e) = O and f(x;e) must be differentiable with
respect to x.

If f(Q) has rotational syrmnetry,i.e. depends on r and x only then
it may obviously be replaced by one equivalent lineal distribution,
independent of B, for computing the distant flow field and the drag.
w the special.casewben f(Q) is lineal to begin with, Eqs. (4c-28)
reduce to the previously established formula (Eq. 4c-24).

.
—

.

—.-—.

.:

.-

Extension to Include Lift and Side Force Elemerits

For simplicity only sources have been considered in the preceding
development. However lift and side forceelements can be included and _____ -
were included by Hayes in his original report. We will not go into the
details here$ but merely indicate the final results, since the funda-
mental ideas of the method have been illustrated in the discussion of
source distributions.

--
-- .-

Following Hayes we define a function h such that .

h=f- ~gz sin e + ~ cos Q) (ic-ti)’” :

--

.- .
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f = f(~;O) . Source stren@h

Pu@ = l(~;e) . Lifting element strength

Pw@3 = s(~;e) = Side force strength

The term ~~ sin 6 + gx cos e) is proportional to the component of force

in the di;e&ion e, end is the only component contributing to the wave
drag in the Hayes calculation. Eqyation (4c-28b), as extended to include
lift and side force elements, is

where h(~;O) is the equivalent lineal distribution (for
of the original spatisl distribution of singularities.

a given station e)

This equation mslcesit possible to determine the wave drag of an
arbitrary spatial system containing thickness and carrying both lift
and side forces. In order to determine the total pressure drag of the
system it is necessary to evaluate the vortex drag produced by the lift
and side force. In Hayes method the vortex drag appears as a mcmentum
outflow through and a pressure on the end of the cylindrical control
surface. It can be evaluated by calculating this momentum and pressure
or by determining the kinetic energy associated with the vortex system
in the Trefftz plsme. Since this is identical with the induced drag
problem of incompressible flow, we will not discuss it further.

D. LEADING EME SUCTION.—

The evaluation of the
integrat@ local pressure
not theoretically complete

drag of a lifting wing of zero thickness by
times frontal area over the wing surface is
unt”illeading edge suction is accounted for.
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This means that the infinite negative pressures
leading edges should be included. In practical

— —.-. ____ —.

NACA TM 1421

—.
acting on subsonic .
applications this leading

edge suction is sometimes discarded since In many cases only a fr”action-
of the theoretical value is actually realized. -. .

However, from the distant viewpoint, leading edge suction cannot
be isolated. This is true because there is no potnt:to-point corre.
spondence between the close and the distant control surfaces. At tti.
distant control surface the velocity field created by the wing leading
edges is merged with the fields created by other areas on the wing and
body.

—.
....——

From the distant point of view leading edge suc~ion is auttiaticall.y
assumed to be fully effective, smd therefore it must b so agsumed from
the

E.—

close viewpoint to get correspondence in the drag values.

——. ..L—
DISCONTINUITIES IN LOADINGS

——
.- — — - —.

For a planar wing, vortex tiag is de~ndent only-on the spanwise
lift distribution. A discontinuity in the ordinates of this lift dis-
tribution produces a concentrated vortex of finite strength and infinite
energy, which corresponds to infinite drag.

—

Wave drag is shnilarly tifected by discontinuities in loadings.
For exsmple, consider a distribution of sources on a stresmwise line.
If there is a discontinuity in source strength, then the drag evaluated
on the distant control surface is infinite.

To prove this, assume a source distribution with a discontinuity
at the point x = X“(see sketch). The velocity potential at a
downstream of the rearward Mach cone frcm Xmay be written

b5k
o z

fl(E)dE

1(X - E)2 -“p?k”z

point Ix)r)

—

+-

.—

(4e-1)

>.: -
.—

.
——

● ✎✎ ✎

✎�

✎�
✎

✎�

�✎
�

●
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The u-component of velocity at the point (xjr) is found by differentiating
Eq. (b-l) axially. (In order to avoid indeterminant forms In the differ-
entiation, the eqmtion is first transformed by means of the relation
~ =x- pr coshu.) This process gives the result (assuming =0):

where M(%) = fl(x) - f2(x).
(4e-2)

At the distant control surface it previously was shown (Ch. IV-C)
that one need consider only conditions very near the Mach cones frcm the
source distribution. Introducing the approximations used in Hayes’
method (i.e., (x - ~)/~r 2 1), Eq. (4e-2) can be expressed

(4e-3)

where x’ = x - pr andx’ - ~<< ~r. Since the radius of the control sur-
face is large compared to the length of the source distribution, the Mach “
cones originating at the sources me essentially plane waves when they
intersect the control surface, so that the
(at the control surface) is (Eq. 4c-18b)

-v= pu

radial component of velocity

4

(4e-4)

The drag, being equal to the transport of horizontal momentm across
the control surface, is proportional to the product of u and v integrated
axially along the control surface. From Eqs. (4e-3) and (he-k) it is
readily seen that the drag includes a term of the form

The integral is non-convergent.
results from a discontinuity in

An infinite drag contribution therefore
the strength of the source distribution.
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1?. THE USE OF SLENDER BODY THEORY WITH THE DISTANT VHWPOINT—

If slender body theory is applied, then the source stre&th is ‘
assumed proportional to the rate of change of cross-se_ctionalarea,
dS/dx, for a correspondingbody of revolution. This means tliatinfinite
drag will be predicted (by the distant procedure) for &ll bodies of
revolutionhaving discontinuities in dS/dx. Such a prediction is, of
course, incorrect; and the error is caused by the application of slender
body theory to bodies which are not sufficiently smooth.

The use of slender hdy theory requires that smoothness should be
maintained at the nose and tail of the body and theref-oredS/dx should
be zero at these locations. In order that dS/dx should be zero at the
nose or tail of a closed body of revolution it is necessary that the
variation of body radius, R, with distance, d, from th~ nose or tail

sho-d~e oft~fo~R *ldl(l/2)+k where k>o. ~fsd’=snotel~f-
nate blunt noses or tails entirely, but excludes “excessive” bluntness,
(Note that the Sears-Haack optimum shape is blunt.)

TIE linearized theory requirement that all velocity pertwbatigns. .
be small theoretically excludes all bluntnes~, but thi% is unimportant
if very small regions of the flofiield are affected.

.

Bodies which begin or end in cylinders also may satisfy the smooth-
ness requirements. —. .—

For a bcd.yto be sufficiently smooth to permit t~- use-of slender
body theory, it is necessary to restrict the “short” wave 1 ngth fluctu-
ations in the plot–of cross-sectionalarea versus length.

(
The word

“short” cannot be defined exactly here, but ‘shouldpro~ably apply to

all wave lengths less than the body dismeter-times -1)

Figure 4f-1 illustrates the effect of wam”length on”the accuracy
of the slender body theory. The drag for an infinitely long corrugated

cylinder according to strict linear theory WE& found by vcm k&m&(7).
Slender body theory is in good agreement with these result: only where
the reduced wave lengths are large canpared.tothe cylinder radius. At
the other extreme two-dimensionaltheory is approached.

It should be remembered that when the distant viewpoint is used
the drag of a singularity distribution is evaluated. The body shape
corresponding to the singularitiesmsy be determined either by “exact”
linear theory or approximated by slender bow theory. For example in
Fig. k.f-2a specific source distribution is considered, and is inter-
preted as a “bump” on a cylinder by “exact” linear theory and by the
slender body approximation. For this ratio of wave length to cylinder

-.

—.
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—

.
—
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—
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COMPARISON OF T..EO/?E77CAL CA LCULAT/ONS
FOR D?AG OF CORRUGATED CYL//VDER

(A.]PATIO OF THE DQA6$ COMPUTED BY SLENDER BODY THEORY

TO THE DRAG COMPUTED W f/NEAR THEORY

(B) RAt10 OF THE DRAG COWPUTED BY TWO-D/mE/VSIONAL

L/NEAR THEORY (ASS12WNG TWO-DiMENS/0h4L FLOW IN

EA C// A4ERlD/AN PLANE) TO THE DRAG COMPUTED

BY THREE-D/A4ENS/ONA L L l#EA R THEORY
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~J————————-——__ _
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PROFILE OF CYLINDER
~ (CROSS-SECT/ONSA RE CIRCULA R)

\
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0

RATIO OFkEDUCED W:VE L ENGT; TO CYL {N;ER D/AMETzR , ~

<FOR LINEAR THEO.QY DRAG OF CORRUGATED CYLINDERa SEE REF: 7)

Fig. 4f-1

.
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diameter the bump shapes and locations are quite different. It is of
interest however that the net volumes contained in the bumps are iden-
tical. This has been proved by Lagerstrom smd Bleviss and generalized

“ by Bleviss in Ref. 22. (This suggests that “volume elements” may retain
their significance even when slender body theory does not apply.)

G. TKE DEPENDENCE OF DRAG COEFFICIENT ON MACH NUMBER—

Hayes(l) has pointed out that, for a distribution of singularities
on a single stresmwise line, the drag, evaluated from the distant view-
point, is independent of Mach number. If the singularities are sources,
and slender body theory is applie~, t~s indicates that the drag of a
given body of revolution is independent of Mach number. However the
application of slender body theory in conjunction with the distant view-
point requires that dS/dx = O at the tail of the body.

Hayes’ result is therefore consistent with a fact previously deter-
mined, that the drag coefficient of a slender body satisfying the
“closure” condition (dS/dx = O at the tail) is independent of Mach
number.

If the singularities are not confined to a single streamwise line,.
then the distant viewpoint gives a drag coefficient which varies with

—

Mach number. This can be seen from the fact that the projection of the
. singularity distribution onto a single stresmwise line varies with the

inclination of the Mach planes used for the projection.

H. SUPERPOSITION PROCEDURES AND INTEWWEENCE DRAG—

In sll the developments discussed in this report the linearized
supersonic flow equation is used. This means that one flow field and
the lift (or volume) distribution which causes it can be ‘superimposed
on a second flow field with its corresponding lift (or volme) distri-
bution. If the individual flow fields satisfy the linearized flow
equation, then their sum does also.

For exsmple, let a pressure field, Pl, correspond to a downwash

field, al, and a second pressure field, p2, correspond to a second down- .

wash field, ~, then the pressure field pl + p2 corresponds to the down-

wash field ~ + ~.
—

However, the drag of the sw of the two fields is not in general.
the sum of the drags of the individual fields. For example, the drag —

of the first field would be D1 =
f
Pl~ dS, where the integration extends

,.
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over the wing and body surfaces, and similarly the &ag of the second

field itiD2 =
J

p- dE. However, the dr>g of the ~6mbination is

%+2 = J(P1 + P2)(~, + %)ds. The terms involving-&Qss products give
.,

the interference drag, Di =
J(

p~a~+ p@l)M.
-.

— .-

1. ORTHOGONAL DISTRIBUTIONSAND DRAG RE-tiCTIONti&EDURES ‘“—

If the interference drag is zero then the two ~stributions are
said to be orthogonal. The use of orthogoul distributions for ~ducing
drag has been studied in Refs. 8, 9, 10, and 11.

For exsmple consider two types of lift distribu~ions which me - . _,..
orthogonal and assume that each one carries a net lift. It ha~ been:
shown (see for exemple Ref. 9) that some c–ombination-afthe two will
carry a given total lift with less drag than would be produced if either
one of the individual types of distribution carried R1-1of the lfft. ~

On the other hand, any given (non-optt.mum)lift_distribution c=
be improved by adding the proper mount of”a non-orthogonal _@Te Of MS- ~
tribution which carries zero net lift. The irpprovementis Qbtained by
utilizing negative interference drag. This can be seen as follows. .Ihe
total drag of the combination is the sum 6f the individual drags plus
the interference drag. !I!heinterference drag can always be made negative

..——

by proper choice of the sign of the distribution that carries zero ne_t
lift.. Also, since the strength of the zero lift distribution enters
linearly into the interference drag, but enters quadratically into its ““
individual drag, the magnitude can be so chosen that-the interference-
drag dominates. Thus the total drag of the combination can be made less
than the drag of the given (non-optimum)lift distribution.

J. THE PHYSICAL SIGNIFICANCE OF IN~CE ~G— .- =

It has been stated that the interference drag, pi, is
A
Pl~2 + Pm)ds

where the subscripts designate the two flow fields wtich have been tsuper-
imposed, and the integration is to be carried over sillsurfaces. Assume
that both flow fields are produced by thickness dist~ibutions. Then the
a values are the body surface inclinations–-whichcorrespond to dS/dx,

the rate of change of cross-sectionalarea-for the bo~y. The
J
Pl~ ~

,-
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gives the drag produced by the pressure field of the first body acting

on the cross-sectional area distribution of the second. The term
f
p2~ dS –

has a similar interpretation.

Assume that both flow fields are produced by lift distributions.

Then
I
PI% = is tk bag created by the downwash field

distribution acting on the lifting elements of the first

(
The surface which supports the lift corresponding to pl

further because of the downwash due to p2.
)

of the second

distribution.
must be inclined

Let the first field be produced by a lift distribution snd the second

by a thickness distribution (a body). Then
J
p1a2 dS is the drag produced

by the downwash field of the thickness distribution acting on the lift
elements plus the drag caused by the pressure field of the lift distri-
bution acting on the cross-sectional area distribution of the body. The

f
PP1 M gives no contribution to the drag in this case.

Assume that the first field is produced by a lift distribution and

the second by a side force distribution. The
f
Pl~ dS iS drag corre-

sponding to the downwash field of the side force distribution acting on

the lift elements, while the
J
P2~ as iS produced by the sidewash field

of the lift elements acting on the side force distribution.

K. I~CE AMONG LIFT, THICKNESS, AND SIDE FORCE DISTRIBUTIONS—

For plansr distributions of lift and thickness (the lift being normal
to the plane) there are no interference drag terms, and the two problems
can be studied independently. However, for spatial distributions, inter-
ference generalJy exists. This has been discussed by Ekyes, and the
physical mesming of the interference drag has been discussed in the
preceding sections.

.

.
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Suppose that a source snd a
lifting element are located as shown
in Fig. 4k-1, the direction of flow
being perpendicular to the page.
Then the component of the lift which
lies in the line connecting the two
singularities causes all of the
interference. If the lift element
were located on the y-axis (corre-
sponding to a planar wing problem)
there would be no interference.

For lift and side force ele-
ments, as shown in Fig. 4k-2, there
is interferencebetween the force
components which lie in the line
comecting the singularities,and
also interference between the com-
ponents normal to the connecting
line.

If the side force element lies
either on the y-axis or on the z-axis
(as shown in Fig. kk-~ and b), then
there is no interference. This can
also be seen from symmetry considera-
tions, which show that the lift ele-
ment produces no sidewash at the
side force element and similarly
the side force element produces no
downwash at the lift element.
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REDUCTION OF DRAG DUE TO LIFT BY ADDITION OF A THICKNESS DISTRIBUTION

Consider the two-dimensional system sketched in Fig. 42-1. The
cross-hatched srea is a thickness distribution lying partly in the pres-
sure field of a flat-plate wing. The relative geometry of the thickness
distribution and the lifting surface are indicated in the figure. Also,
the pressure distributions, relative to the two-dimensional pressure @p,
are shown in parentheses.

/

/

\

\

Fig. 42’-1
t

As long as the pressure field of the thickness distribution does
not ’intersectthe flat-plate, the lift of the system is the ssme as for
the flat-plate by itse~. On the other hand, the interference between
the pressure field of the flat-plate and the thickness distribution pro-
duces a negative drag contribution, so that the total drag of the system
(omitting friction) is 12-1/2 percent less than the drag of the flat-
plate alone. Thus, the total lift in this case is unaffected by intro-
duction of the thickness distribution snd a drag reduction is obtained.

This exsmple is related to the Busemann biplane. The result obtained
illustrates the fact that, in the general case (non-planar systems),
sources and lifting elements have an interference drag.

.

.
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mwPTER v. THE CRITERM, FOR DETERMINING OPTIMUM DISTRIBUTIONS

OF LIFT OR VOLUME ELEMENTS ALOm .

—

A. THE “CCMBINED FLOW FIELD” CONCEPT—

The idea of the “combined flow field”.was introduced by Munk(12)

and etiended by R. T. Jones(13,14). Consider a distribution of U.fting
elements in a free stresm of given velocity. A certain downwash velocity
and pressure are”produced at-each point in t& field. If the direction
of the free stream is now reversed without “movingt@ lift el&ient”sor

—

altering the directions and magnitude of these lift .-contributionsjthen ““
in general different downwash velocities agd pressures are produced at
each point in the field. —-.

One-half the sum of the downwash velocities produced at a given
point in the forwa~and reverse flows is cialledthe-downwash veloci~ “
of the combined flow field at that point. –A similar-definitionapplies
to sidewash velocity. One-half the difference of the pressures in the ‘-
forward and reverse flows is called the p~-ssure in the combined flow
field. These definitions follow from the super-posi~ionof the
-perturbationvelocity fields for forward and reverse--flow. It should

*-

be remembered that in the flow revers&.1the lift distribution (not the
wing geometry) is fixed. -.’

..

*

K

.-

--

—

.-

—

-—.

The ssme ideas may be applied if other singulsr:ties such as.so~ce~~’
side force elements and volume elements tie considere-d.When sources-tie
used the signs must be reversed when the flow direction is reversed. A
source in forward flow becomes a sink in reverse flo”w.

.-

B. COMBINED FLOW FIELD CRITERION FOR IDENTIFYING—
OPTIMUM LIFT DISTRIBUTIONS —

-.
-..—.-. .-—

A necessary and sufficient condition-forminimum wave plus vortex

drag was given by R. T. Jones(13) in connection wit~planar systems. The
condition is that the downwash in the ccmbined flow field shall be can- =
stant at all points of the plemform. This result depends on the fact
that a pair of lifting elements has the s~e dragiryfo~~d.~d reverse
flow, which is also true when the lifting,elernen%sage not in t~” same

.—

horizontal plane. Hence the above criterion can be extended immediate~”-
to lift distributions in space by requiring constant downwash (in the
combined flow field) throughout the space. .,

*

.
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TEE COMBINED FLOW FIELD CRITERION FOR
IDENTIFYING OPTIMUM VOLUME DISTRIBUTIONS

61

A necessary and sufficient condition for minimum wave drag due to

(13) in connection with planar systems.thickness was given by R. T!.Jones
If total volume is fixed then the optimum distribution of volume gives
a pressure gradient in the conibinedflow field which is constant over
the planform.

As in the case of lifting elements this criterion csn be extended
to cover thickness distributions in space. It is then necessary for the
pressure gradient in the combined flow field to be constant throughout
the

D.—

space.

UNIFORM DOWNWASE CRI’131RIONFORMINH VORTEX DRAG

A necessary and sufficient condition for vortex drag alone to be
a mininnunis t~t the downwash velocity
system shall be constsnt in the Trefftz
is the projection of the wing system on

tion was given by Munk(~>).

If the wake of the wing system has

throughout the w&e of the wing
plane. (The wake cross-section
the Trefftz PISLE.) This condi-

an elliptical cross-section then
a constant intensity of lift over the cross-section satisfies the above
condition and gives the minimum possible vortex drag. (See Appendix V-l).
In particular when the cross-section of the wing wake degenerates into
a horizontal line, (correspondingto a planar wing) the fsmiliar require-
ment of elliptic spanwise load distribution is obtained.

E. EIUP’I’ICALLOADING CRITERION FOR MINIMUM WAVE DRAG DUE TO LIFT—

In special cases elliptic loadings identify minimum drag configura-

tions, as has been shown by Jones(14). ~t the space containing the

lifting elements be cut by a series of parallel planes each inclined at
the Mach angle to the flow axis. Consider all the Uft intensity cut by
any one plsme to be located at the intersection of the plane with the
flow axis. If the resulting load distribution on the axis is elliptical,
and if this is true for all possible sets of parallel planes (inclined
at the Mach angle)l then the wave drag is a mininmm.

In Hayes(l) procedure for calculating drag (see
dition corresponds to obtaining the minimum possible
at every angular position on the cylindrical control

Ch. IV) this con-
drag contribution
surface.
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.—

Such minima cannot be attained in general since the condition is
sufficient but not necessary. However if they are attained smd if the
vortex drag is also a minimum then the more general criterion (constant
downwash in the canbined flow field) is satisfied.

F. THE “EZIDTICAL LOADING CUBED” CRITWR1ON FOR—
MINIMUM WAW3 DRAG DUE TO A FIXED TOTAL VOLUME :

sears(16)and Ha,ack(17)in determining optimum shapes for bodies
of revolution in supersonic flow have also determined sufficient condi-
tions for identifying opthnum distributions of volmne elements within
a prescribed space. — ...--—

We consider a distribution of volume elements within a prescribed
space and ask how these elements should be-arY~ed in order that they .:
should cause the least wave drag while providing a fixed total volume.
If the equivalent body of revolution for a given angular position 61

on the distsmt control surface (see Ch. IV) conforms to the Sears-Haack
opttium shape then ,thewave drag contribution at 91 is a rein-. There-

fore if the equivalent bodies of revolution for all values of 6 sre
optinmn sha~s the total wave drag is a minhmxn.

The density of the lineal distribution of volumE elements repre-
senting the Sears-Haack optimum shape corresponds to the cube of an
elliptical distribution over the length of-the Iine.:.&rice if all t~
equivalent lineal distributions have this form an optimum is ensured.

Such minima cannot be attained in general since the “Elliptical” “-”
Loading Cubed” criterion is a sufficient, but not a necessary condition
for minimum drag. When such minima are attained the more general cri-
terion (constant pressure gradient in the ccmbined flow field) is also
satisfied.

G.—

when

COMPARABILITY OF.MINIMUMWAVIEPLUS VORTEX DRAG
WITH MINIMUM WAVE OR MINZMUM VORTEX DRAG

It is pos6ible for minimum wave plus vortex drag to be obtained
neither the wave nor the vortex drag is individually a minimum.

For example consider that the “spacei’
--

within which lifting elements _
may be distributed is the planform shown in the figure. For the vortex
drag to be a minhm.unit is necessary to maintain an eIliptic spanwise
loading over b. This requires a finite load on “a” which in turn pro:
duces infinite wave drag if the chord for “a” goes to zero. However

—

*

.-

--.—
—

—

.
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.

.
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—
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t
t-a -4

+’-+
the minimum drag due to lift for the planfomn is certainly finite (load
the end pieces only and consider them as isolated wings) hence minimum
vortex drag is not consistent with minimum total drag in this case.

On the other hand, for a pl.amxrwing of elliptical planform minimum
wave drag snd minimum vortex drag
intensity) lift distribution.

H. ORTHOGONAL LOADING CRITERIA—

Optimum distributions can be
(8,9). TIE optimum. considerateions

are obtained with the ssme (constant

identified also through orthogonality

distribution of lifting elements in a
space is orthogonal to evefi distribution carrying zero ~et lift and is
not orthogonal to any other distributions.

.

A similar statement can be made for the optimum distribution of
volume elements alone (assuming for the moment that negative local vol-
umes are not excluded). However if lifting (and side force) elements
are introduced in addition to volume elements, then the criterion must
be modified. For example the rotationally symmetric wing plus central
body having zero wave drag is orthogonal to alJ singularity distributions
although

not been
elements
lift and

it contains a net volmne.*-
—

criteria discussed in preceding sections of this chapter have
thoroughly investigated for cases involving lift and volume
Simultazleously. However, some material.on interference between
volume distributions is given in Ch. IX.

* See p. 103 ff. Since the wave drag is zero the disturbances on a
distant control cylinder sre identically zero. Hence its interference
with any other singularity distribution is zero.
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APPENDIX V
—

DISTRIBUTION OF LIFT IN A TRANSVERSE

PIANE FOR MINIMUM VORTEX DRAG

(15), the vortex drag of a spa-As stated by Munk’s Stagger Theorem
tial wing system is not changed if all lift and side force elements in
the system are pro~ected onto a single
tion (see Fig. A5-1). l?urthermore,if

p=~ normal to the flight di&c-
there are no side force elements,

. .
—

-:
—

—

A
i?

~/SFP@UZ?ON OF

LIFT IN SPACE

@x

/v .——..—_.—
Fig. A5-1 -- -.

then Muds’s criterion for.minimum vortex drag is that in the Trefftz
plane, the downwash in the wake must be constant. (The wake cross-
section is defined as the projection of the wing system on the Trefftz
plane.) Assume that the downwaslifield associated with .theoptimum lift
distribution is w . -w. and that a uniform field w = +Wo is superimposed

on the original field in the Trefftz pkne; then the res~t~W two-
dimensional flow pattern is equivalent to a uniform flow around a solid
body. Munk gives the expression for the lift distribution in the trans-
verse plane in terms of the velocity potential of this new flow for

.

.

—
—

..-——

. . -

,

.... .
-—

.—
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certain bodies symmetrical with respect to
if @ is the two-dimensional potential flow
then

Zop% = ()dfi2pu —
‘z boundary

and

dvorteqin = ()‘f 2opt

65

the X-Z plane; for ex~ple,
around an elliptic cylinder~

-J

Fig. A5-2

where Z and d are the lift =d drag intensities per unit area in the
transverse plane. For an ellipse oriented as in Fig. A5-2, the

potential is(18)

( - ‘o)sh’$ = wo(a + b)cosh ~

where

y + iz = ~a2- b2 cosh(~ + in)

The curve k = ~. corresponds to the boundary of the lift distribution

in the transverse plane. From the above eqpations one obtains

so that the lift intensity in the trsrmverse plane must be constat to
obtain xnininnnnvortex drag. With S = flab,the drag is

()~L=
~2

horte~n = kqS(l + a/b)

where L is the total lift generated. Thus to obtain mi.nhmm vortex drag
for a spatial distribution of lift whose Trefftz plane projection is an
ellipse with one axis vertical, the lift should be distributed so as to
give a constant intensity when projetted on the Trefftz plane.
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This proof can be extended to cases in which the projected Uft ●

distribution covers a rolled ellipse, as shown in Fig. A5-3. If o~
lift (and no sideforce) elements tie
allowed, Munk’s criterion of con-

*.

/ stant downwash still holds, but the

t’ lack of symmetry precludes use of the
formulas given above. However, the

/’
~ optimum lift distribution can be

Ltw+ Y- determiqgd by a superposition of two
symmetrical optimum distributions,
as shown in Fig. A~-4. L1 and L2

—

..

+

- u%-
-- La

(!4’

. .

(c)

.,

.

— .—

Fig. A3-4
— .-..--....—

are constsat intensity lift distributions over the elliptic areas which
produce constant downwashes W1 and W2 over those areas., Because the

governing equation is the Laplace equation, which is linem, the lift
distributions L1 and L2 and the flow fields they produce can be super-
imposed. If%= Lcos#andL2= L sin @ and Fig. A5-4c is rotated

through the angle #, then Fig. A5-4c corresponds to Fig. A5-3. There
is a uniform dowmwash w correspondingto the uniform liftL. Thus
Murk’s criterion is satisfied and the drag is a minhnum. It Can be
shown by symmetry that the total interference drag between the lift
distributions ~ and L2 is zero so that the drag of L is obtained

simply by adding the drags of ~ and_L2; that is

.-
...
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%orte~n
%L2 L22

= 4qS(l + a/b) + 4qS(l’+ b/a) =

67

L2(a sin2@+ b cos~

4qS(a + b)

It should be noted that for this optimum rolled ellipse case there is
also a uniform sidewash generated.- If a distributio~ of side force
elements were avaihble, it would be possible to utilize the uniform
sidewash to reduce the vortex drag below the value given above.
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CH4PTER VI. THE OPTIMUM DISTRIBUTION OF LIFTING ELEMENTS ALONE

A. THE OPTIMUM DISTRIBUTION OF LIFT THROUGH A SPERICAL SPACE—

Consider a sphere of radius “R” with its center at the origin, and
let a total lift “Lc’be distributed through the sphere with local imten-

Si.ty “2. ” If 2 =. L , r being the radial distmce from the
#j32[~2 ---

origin, then elliptic loadings are obtained when the sphere is cut by
any set of parallel planes (see Appendix VI for derimtion). The fact
that elliptic loadings are produced Wherithe planes are inclined at the
Mach angle (to the free stream direction) insures that the wave drag is
a minimum (Ch. V). The cross-section of the wake is circular, and if
the lift intensity is projected onto a plane normal to the free stresm
direction it can be shown that the lift is uniformly distributed over
this circular cross section. This insures that the vortex drsx is also
a minimum (Ch. V).

The lift distribution 2 = L then
.+2f~

sible wave and vortex drag. By Hayes’ procedure

the minimum -W drag iS ~n wave =
~2p2

aq(m)w;

--

glve& the mfntimn pos-——
..-

it can be found that

the minimum vortex

.—

drag(15}
L2

is Dmin vortex = and the minimum tot-aldrag is
2nq(@

[1L2 2M2-1.
Dmin = ~fiq(=)2 M2

The largest planar wing of

has a minimum drag(14) which is

—

circular planform contained in
—

greater by the ratio ~.

a factor of 1.885 at M = ~. However, the drag compw~~o~ is,

-.

is-

u

——

--
-.

. .

.
-.

..
-.

the sphere
—

This is

of course,
not complete without considerationof the viscous drag (and thickness
drag). For the spatial lift distribution described above, the required
wing area is infinite and so, then, is the viscous drag”. But the ssme
minimum of wave and vortex drag can be achieved with a nuuiberof wing
systems having finite wing srea. For exsmple, consider_the infinite set
af cascades enclosed in a spherical space as shown in Fig. 6a-1. At .

,_

.-
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.

.

,

+-.~ “’2’’’’’’:’’o.= r/MUM EOUIVA L EN T L INEA L DlSrRlBU710N

FOR M1/Yf4?;M WA V(E L7RA G (EL L IPTIC)

Fig. 6a-1: Cross-sectional view of an optimum set of finite area
lifting surfaces in a spherical space

M = ~ tms set of cascade$ covers the region adequately so that the
equivalent linesr distribution will be continuous. Determining the lift
distributions for the cascades is essentially a stepwlse process in that
the vortex drag criterion is satisfied over part of the space and then
the wave drag criterion over part, alternating back and forth until both
conditions are satisfied everywhere. In this example rotational synmetry
is assumed and the center cascade is used to satisfy the vortex drag

requirements; thus, the outer region ~ ~ r ~ R of this cascade must
E .—

.

.
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carry a constant intensity of lift. The cascades of radius R/~are 8

used to give the equivalent linear distribution the required elliptic
shape for R/@”s ~~ R~. The next step is to evaluate the distribution
over another section of the center cascade to g~ve constsmt lift inten-

4

sity when elements are summed up in the free stream direction, then
satisfy the wave drag criterion with the neti cascade, etc. This proc- ‘
ess is continu&d working inward to the center of the space; although
an infinite number of cascades are required the tot@ wing area is
finite. Each of the small cascades has a-”r~ius l/P ttieS the rtius _ - j

of the next lsrger one and the total win&area is S = 2.172nR2 (Ch. VT B).
It should be noted that this isnot necessarily the minimum wing area
that could be used”,so the distribution obtained is au optimum one with
respect to wave and vortex drag only and not with re~pect to friction
drag.

. ..-.

—..—
—

B. THE OPTIMUM DISTRIBUTION OF LIFT THROUGHAN EILiI%OIDAL SPACE— —
>:. --.

The spherical space with its optimum lift distribution can be
changed into an ellipsoidal space with a correspondinglift distribution
by a scale transformation of one of the cartesi~ coordinates. This
transformation transfozmm planes into pla~s” scIthat elliptical loadings
are preserved for the ellipsoid and minimum wave “dra&is obtained. .

Also a const~t intensity of lift over the w~e”cross-section is--
maintained for the ellipsoid so that the vortex drag.is also a minimum. .

Although the optimum lift distribution for an ellipsoid is obtain-
able from the spherical case, the value of_the minimum drag is not nec-
essarily the same. For an ellipsoid formed by revolving an ellipse of
semi-major axis B
axis, the optimum

and semi-minor axis R about the free stream (major)
distribution of lift is . .-

L

[ 1
1/2

fi%%l- (x/B)2- (y/R)2- (Z/R)2

The wave drag, computed by Hayes’ method, i-s
——

~2L2, j ..
%inwave =

[“ 18fiqR2(B/R)2+ pp
—

.

.s. ,

, M,:,

---:
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and the vortex drag is also a minh.mun,

L2
hn vortex = —

8fiqR2

so that the total drag is

~2
%uLn=—

8ti@2
P2

[/ 1

+1

(B R)2 + 192

71

For B = R the results reduce to the spherical case.

Several limiting cases can be exsmined; in one em ellipsoid is
collapsed into a horizontal plansr wing of elliptic planform carrying
constant pressure. Optimmn cases of this type were first discussed by

R. T. Jones(14). Another limiting case which gives minimum drag occurs
when en ellipsoid is collapsed into a plane normal to the flow direc-
tion (B/R-+0). Then the wing system can be interpreted as a uniformly
loaded airfoil cascade (of zero chord and gap) within the elliptical
cross-section. The entire cascade can be analyzed as a two-dimensional
system. If the chord is chosen to be 13times the gap then the airfoils
in the cascade sze non-interfering but the lift distribution is suffi-
ciently continuous (Fig. 6b-1). In other words, when the cascsde is
cut by planes inclined at the Mach angle, the resulting load distribu-
tions used in I@yes’ method wilL be continuous. The total.wing area is
then B times the area of the ellipse..

\ \ \
\

//VTERFE@/NG NoN-INTERFERING NON-fWTE..FE#’lAlG

AIRFOILS AIRFOILS AIRFO!LSW17H SUFFICIENTLY
CONTINUOUS LIFPDISTRl&U TION

Fig. 6b-1: Exsmples of airfoil spacing in cascades
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A third
then

limiting case is the slender

~2 + ~2~2
%in ‘— =

2Jcq(2R)2 2fiq(@2

The wave drag portion is the seineas that

body obtained when

l?ACATM 1421
.

“Dvortex+~ave
L.

B@+ co; *

.= .....-.
_—.=

-—. 4 —

obtained by Jones for a planar

(13), while the vortex drag for.the spatial distribution isslender wing
one-half that obtained by Jones for the planar distribution.

c. THE OPTIMUM DISTRIBUTION OF LIFT THROUGHA “DOUBLE MACH CONE”—

Consider a space consisting of two Mac_hcones placed base to base
(Fig. 6c-1). If a uniformly lofied cascad~ of airfofzk (with zero gap
and chord) is placed at the maximm cross-s=ction of this space then

—.

u

Fig.

elliptic loadings will

.

.

6c.1:
with

.-

Double Mach cone space ‘“
-.—.-- -

—
optimum cascdde .-

be obtained when the space is cut by planes
inclined at the Mach angle. This airfoil cascade con=quently produces
the minimum possible wave drag for wing systems contained within the
space and carrying a specified lift. The uniform distribution of load
over the circular cross-section insures mi@mml vorte~drag also, so
the lift distribution

The value of the

case.

is an optimum for the double Mach cone. -

minimmn wave drag (obt”ainedby E&es’ method) is
.>

the vortex drag has the ssme mag~i.tudein this
—
.- .. -:— ...—

.>—- -

.

.-

—



NACA !LNl1421 73

The wave plus vortex drag is then D = L2 . This is equal to
nq(2R)2

the minimum vortex drag alone for a planar wing of span 2R. If the ai.r-
foil cascsde is compsred to the largest planar wing of disznondplsdorm
which can be contained within the.double Mach cone, the minimum wave
plus vortex drag of the dismond planform is approximately 1.52 times

greater than for the cascade(2)●

Again it must he emphasized that the drag comparison is not com-
plete without the inclusion of viscous drag and thickness drag for the
wingsystem.

Since the circular cascade is an optimum arrangement,
Jones’ criterion (Ch. V). This can be checked as follows:
dimensional analysis the downwash, e, in the aft Mach cone
is the angle of attack of each
is zero in the fore Mach cone,
field is constant and eq~ to

~STREA~L/NE ,

aifioil (Fig. 6c-2). Since

it satisfies
By two-
is 2a where a
the downwash

the downwash velocity in the combined
ciUthroughout the double Mach cone.

J--7’eExpAN’foN ‘A”=

REAR A4ACHCOAfE

\
p.o

\

\

~lgomPREs.s/oAf WAVE

Fig. 6c-2: Two-dimensional analysis of downwash
of an optimum cascade

0/=CASCADE

in resr Mach cone



74 NACA TM lk21
—

Far behind the cascade in the wake of the wing system .s= a; this
. can be shown by equating lift to rate of change of vertical momentum.
The individual wings of the cascade are non-intetiering and, in the
limit as gap and chord go to zero, have two-dimensional wing character-
istics. The wing area for a sufficiently continuous lift distribution
(Ch. VIB) is equal to the cascade cross-sectionalarea A times ~. Cons-
equently L = CLqS = (4a/B)q(j3A). By Munk’s criterion (see Ch. V and

Ref. 12) the downwash in the Trefftz plane over the ‘=ea behind the
cascade is constant; thus, the vertical momentum of the fluid in the
downwash region behind the cascade is (pAU) (dJ). The vertical momen-
tum of the surrounding fluid can be evaluated from the lmown “virtual
mass” of a solid circular cylinder of cross-section~ area A moving
downw=d in the fluid; this latter mcmentum is equal to that of the
downwash region itself. Thus, by the momentmn theorem, L = 2pAu(Gu)
and equating the two expressions for L gives e = a.

The airfoil cascade is not the only distribution of lift in the
double Mach cone which has minimum wave drag. A true lineal distribu-
tion of lift distributed as an elli= lo—dim along the axis of the
double Mach cone will produce the ssme minimun value of wave drag. So

.- -.
.- —

~ ;=_

d

.

.—--

—

.—

—

also will a lift distribution of constant intensity throughout the entire
double Mach cone. However, the latter two cases will not give the mini-
mum value of vortex drag; in fact, the true lineal distribution will
have infinite vortex drag.

.

—

—
—.

.

-.

...-
. ..

.

-. .
. :-.,

.

——
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APPENDIX VI

7.5

DERIVATION OF OPTIMUM DISTRIBUTION OF LIFT THROUGH A SPHERICAL SPACE

A sufficient condition for minimum drag is that each equivalent
lineal distribution of lift should be elliptic (Ch. V). For the spherical -
space these equivalent linesl distributions will be the ssme at all angu. __
lar stations if the optinn.mlift distribution is rotationally symnetric.
For simplicity, exsmine the problem from the angular position (3(on the
control surface) equal to 90°; then the Mach planes will be psrallel to
the yaxis. The notation to be used is illustrated in Fig. A6-l; cylin-
drical coordinates (~,S,@) and the radial coordinate r will be used.

()If the spatial lift distribution is Z(r) = Z ~~ then the equiva-
lent lineal distribution along the ~ axis will be

,Z

4=9s‘d“ =‘J-w=’)”

u

Fig. A6-1

However,

‘(b =“m
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where K depends on the total lift of the sphere. Introducing the radial
coordinate r, the integral eqgation to be solved is

The solution to this equation, found by differentiate-onwith respect
to <, is

2(’)=‘“’ii
— .—

The total lift of the sphere is

so that the distribution of lift for minimiinwave &s& is

—.

--

—

--

. .

.—-
—

.—

—
.-.-
—-.—

.-

.
—..- ..+

—
. .

For application of Hayes’ method, the equivalent lineal distribution
along the x axis is needed. A plane ~ = ~’ intersects the x sxis at
x . -M~’; since the distribution is”spreti.out over a larger distance
along the x axis, its maximum intensity wilJ_be less;””thus,

q=mm =2&f~F(x)opt =Rl
—

.. —.

Hayes defines two functions such that for the lifting case (Ch. IV)

Pugz
F=—

P ._

.
—

.—.—

-.
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The expression for the wave drag contribution
is, from Eq. (4c-30),

~= fi]h’(%)h’~l)z.l., -

77

at each angular station El

Ixl dxl dx2

and the total wave drag is

(I-6)in terms ofThe Integration for &D/de has been carried out by Sears
a Fourier series expsmsion of an arbitrsry function h. For the wave
drag optimum tti distribution h is elliptic and only the first term In
the series for h appears. (Note the similarity to the vortex drsg opti- -

mums in incompressible flow.) If h
Substituting in the equations above

have =

= C~YZji7 then dD/dEl.pc’16.I
leads to the final result,

J32L2

8fiqR%2
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CHAPTER VII. THE OPTIMUM DISTRIBUTION OF VOLUME ~ S ALONE*

A. THE SINGULARITY REPRESENTING A.NELEMENT OF VOLUME—

The investigatio~ of lift distributions is simplified by the use of
a singularity wldch represents an element of lift. This singularity is
the elementary horseshoe vortex. The intensity of lift corresponds to
the strength of the singulsxity and the location of the lift force is
identical with that of the bound vortex. The study of volume (or
thickness) distributions i.ssimikr~ simplified by identifying tti.sin-
gularity which corresponds to an element of volume. —

Consider a source and sink of equal strength -d located on the ssme .
streamwise”line. In each unit of time a certain quantity of fluid is.
introduced into the flow pattern by the source and %he same quantity is
removed by the sink. The volume occupied by the fluid flowing from source
to sink depends on the stren@h of the source and s@k and the distance _.
between them, and also de~nds on the velocity and density of the fluid
flowing frcm source to sink. However, if the Volw–is to be considered
a linear function of the strength of the singularities,then the mean
value of density times velocity must be unaffected by the perturbation
velocities created by the source and siti”. This means that in a line-
arized treatment of the problem the fluid flowing from source to sink
may be considered to have free stresm density and velocity.

Letm=

d=

P. =

U. =

Mass of fluid introduced per fii{ time ““ –
_.—

Distance between source and sink

Free stresm density
—

Free stresm velocity

Then the volume occupied by the fluid is

/( )vol = md poUo

●

&

—

—
—

——

.

-—

—

-..—

—

—.

-.—

Since the volume is proportional.to md, doubling the intensity of
source and sink and halving the distance between them should produce a
shorter, but thicker volume of the same magnitude. This suggests pro-
ceeding to the limiting case (as in incompressibleflow) where the source

* The contents of this chapter have appeared in the paper “The Drag of - ““ .
Non-Planar Thickness Distributions in Supersonic Flow,” Published In
the Aeronautical Quarterly, Vol. VI, MELY-1955. “ - .-
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. and sink are combined in a dipole with sxis in the-free
This singularity should represent an element of volume,
fineness ratio of the element is zero..

79

stresm direction.
although tbe

The potential for a unit source at (~,0) in supersonic flow is

‘s ‘ ‘“+

where ~ = F 1; x and ~ are coordinates in the streetwise direction
and r is radial distance from the x axis.

Differentiating with respect to x giVeS

$Sx= (X-E)

[

3/2 = #v

1‘n (x - & - J3’r’

where @v is the potential for the unit dipole or an element of volume

. eqpal to lIUO.

.
B.—

sity

THE DISTRIBUTION OF VOLUME ELEMENTS

For a distribution of volume elements along the E axis with inten-
f(~), starting at 3 = 0, the .potentislis

J@1 ‘-pr f(~)(x- ~)d~=—
‘n ~

[ 1
‘~3/’

(x-e)’-~r

Integration by parts gives

$=‘++-$==
The first term in the expression for the potential is infinite,

and apparently corresponds to the “roughness” of the body, which iS an
. assembly of blunt elements (see illustration).

u.* .—
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The smoothly faired body (indicatedby”dash lines)
are concerned with, and this creates the finite Part ~f

NACA TM 1421

is all that we .
the potential.

ws finite part i.salso the potential for a so~ce ~istribu~ion Of _
intensity eqml to +f’(~). This source distribution can b used to con- .

struct a body of revolution extending from -z/2to +2/2.

The shape of the body of revolution created by the singularity dis-
tribution may be obtained a~roximately by slender body theory or more
accurately by “exact” linear theory. In the first case the volume is

J’
+1/2 ..

‘(&)dg which agrees exactly with the sum of t~ volume elements.
.2/2 ‘o

An example of the second case is shown in Fig. 4f-2 w_@re a singularity
distribution on the axis is interpreted first by slender body theory
then by “exact” linear theory as a “bump” on a cylinder. The bump shapes
and locations are quite different but the volumes are identical. This
has been proved by Lagerstrom and Bleviss and generalized by Bleviss fn

Ref. 22.
—. —

.—

A planar distribution”ofvolume elements may be interpreted by
(“exact”) linear theory as a thin planar wing. The volume contained in
this wing is exactly eqpal to the sum of the volume elements.

The concept of the volume element is not necessary for the study of .

smooth slender bodies of revolution and planar wings, since these con-
figurations are relatively simple. However the use of the volume element
does help to clarify problems involving more general spatial distributions -
of thickness. -— —

The points to be emphasized are that fixing tb S~ Of the vol~e_
—

elements fixes the total volume, and fixing the distribution of volume
elements determines the drag. It is therefore possible to study the

—

drag of a distribution of volume elements without calculating the exact
shape of the correspondingbody. This is analogous to the fact tlyat@
drag of a distribution of Uft@ elements can be studied without calcu- ~
lating the twist and camber of the correspondi~ ~W.s @aces. ——

c. THE DRAG OF VOLUME DISTRIBUTIONS ON A—
STRWISE LINE AND TKE SEKRS-HMCK BOti

A body of revolution may be constructed frcm a dhtributton of vol- –
ume elements along a stresmwise line, or from the equivalent distribu-
tion of sources. The body constructedfrom”volume elements is sm

.-

“infinitely rough” body and has infinite drag. However, discarding the
infinite part of the potential leaves a “smooth” body (with finite drag) .
which is equivalent in every respect to the body created by a source
distribution.

-.



.

.

.

NACA TM

If

body of

To

1421

f(x) is the intensity of

revolution of length “t”

81

the volume element distribution for a

then the drag is given by(16)

D ‘ tqff;; “’h)f’’(xwlxl - ‘2

maintain constsmt total volume according to 1:
n+l/2

nearized theory

it is necessary that I ~ f(x)dx = Constant. The body shape giving
J z/2

minimum drag for a given length and volume has been determined by Sears
(16)

(and Haack 17) independently. The corresponding f(x) (which is propor-
tional to the cross-sectionalarea) is given by

/n+z 2

[012 3’2 J -z/2
f(x)dx

m
fopt(x) S*1 - y

[01

o volume ~ 2x 23’2
1 ‘— z/2 - -i3X

Thus the optimum distribution of volume elements along the axis
corresponds to the cube of sm elliptical distribution. (For lifting
elements the optimum distribution is elliptical.)

The value of the mintium drag is

D. THE SEARS-HAACK BODY AS AN OPTIMUM—
VOLUME DISTRIBUTION IN SPACE

If the volmne elements are not confined to a single stresmwise line,
then the drag contributions at different angles, e, on Hayes’ cy~ndrical
control surface are not necessarily the ssme. For aDY one angle, e, the

f“(xl,e)f’’(x2,e)Znlxl - x21dx1 ~2

.
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Here f(x,13)is determined by’the use of “Mach plsmes”
—,

for the
angle e. All the volume elements interceptedby any one “Mach plane” P

are transferred (in the plane) to the stresaswiseaxis. The resulting
distribution along the @s is f(x,e). The problem of finding the mini-
mum drag contribution at the one singlee is then similsx to the Sears- b

—— —
Haack problem. If f(x,e) corresponds to the cube of Em elliptical dis-
tribution for every e, then the totaL drag is a minimum, and the drag
contribution at each 8 is a minimum and corresponds ~ that of an eqplv-
alent Sears-Haack body.

It is not always possible
contributions at all angles 0.
distribution of thickness
within a space which has
rotational synmetry about
a streamwise axis, then
it may be possible that
all the equivalent bodies
are Sears-Haack bodies
having the ssme length.
For exsmple, consider that
a double Mach cone bounds
the space within which
thickness is to he distrib-
uted. The Sears-Haack
body placed on the axis
is an optimum for this
space. It has the same
drag contributionat
every angle on the cylin-
drical control surface,

to stiultaneouslyd.ntiize the drag
However if we consider the optimum

—

—
.

SEARS-HAACR BODY BOUNDED

6YDOUBf.E~AClf CO~Et3PACE

and of course, the ..

“equivalent” body of
-..

revolution for any angle 0 is identical with the real body. Howe”ver,
a “ring” wing (which carried no radial forces) plusa central body of
revolution can be designed
to have exactly the same
drag as the Sears-Haack
body. The equivalent
bodies of revolution are —
all identical with the ~
Sears-Haack body. This

-—

is discussed in the next
(For the casesection. —

in which radial forces
are carried on the ring
wing see Ch. IX.) RING WIIVG PLU-~ CENTRAL

-.

.

.
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=
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—
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.
BODY HAVING SAMELWAG

AS SEARS-HAACKBODY
.
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RING WING AND CENTRAL BODY OF REVOLUTION
COMBINATION HAVING THE SAME DRAG AS A SEKRS-HAACK BODY

83

Consider a ring-wing plus a central body of revolution contained
within the space bounded by a double Mach cone. Because of the rota-
tional symmetry of this particular system, the equivalent body of revo-
lution is independent of the angle 0 on the cylindrical control surface.
In this case, if the local radial force on the wing is everywhere zero,
the drag of the equivalent body of revolution is, according to Hayes’
formula, identical to the &s& of the original system. Thus, a ring-
wing (which carries no radial force) plus a central body of revolution
will have exactly the ssme drag as a Sears-Haack body if the equivalent
body of

To
for the
Wing by
tracted

revolution is a Sears-Haack body.

design such a system, we may select sm.ysmooth, slender profile
ring-wing and compute the cross-sectional areas cut from this
a set of parallel Mach planes. These areas must then be sub-
from the cross-sectional areas which would be cut from a central

Sears-Haack body by the correspondingMach planes. The resulting srea
difference defines the area distribution (in the Mach planes) of the
correct central body, (This srea must be ~ojected. normalto the flow
direction to obtain the cross-sectional area of the central bmiy defined =
in the usual way.) This body, together with the ring-wing originally
selected, is an optianm distribution of thickness within the double Mach
cone space.

As an exsmple, consider a ring-wing with tmckness distribution
corresponding to a hi-parabolic arc profile. The camber necessary for
zero local radial force need not be determined, since it does not affect
the shape of the central body. Assume that the wing is six percent thick
and located W-way between the axis and the apex of the space. If the
central body of revolution is designed so that the equivalent Sears-Haack
body is of fineness ratio 5, the resulting shape of the central body of
revolution is as shown in Fig. 7e-1.
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REVOLUTION
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.
Fig. 7e-1: Cross-sectional view of ring-wing and central body

(an optimal distribution of thickness within the double Mach
cone space)

F. OPTIMNM THICKNESS DISTRIBUTION FOR A _—
PIANAR WING OF ELLIPTICW”PIA.NFORM —

It is desired to find the optimum thickness distribution for a
planar wing of elliptic planform and given volume; this problem was

first solved by R. T. Jones(14). A geometrically simpler problem, which
will be examined first, is to find the optimum thickness distribution

for a circular wing of given volume. The method of -s (1) in which
the drag is evaluated by summing increments of drag at each angular sta-
tion around a cylindrical control surface fs.raway from the body, will
be used. For the total drag to be a minimum, the increment of drag at
each singularstation should also be a mirdaym.

If the thickness distribution of the circular Planform is rota-
tionally symmetric, then the equivalent bodies at e~ch
will have the ssme shape (althoughdifferent ‘*fineness
Synmletry. If t(r) is the thickness distribution to be
given volume V, then —

--

-W station —
ratios”) due to
optimized for a

a-

— -—. .

—.

— .- .—
“.
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J
R

V= 211 t(r)r dr (7f-1)
o

where R is the radius of the circular wing and r, Elare polar coordinates
fran the wing center (Fig. 7f-1). The =e”a cut out at each point along

the ~ axis by plsmes normal
to that axis is

u

4,Y

/
=x

The equivalent lineal distribution along

J

R
s(x) = 2 Cos ~

x Cos p.

with

n+R sec u

J
r+R2-~

s(g) =

-Wt “

2
f

R t(r)r dr=

km

the x axis is

rt(r)dr

r2 - X2COS2W

~
S(x)dx = v

-R sec w

For minimum drag, this distribution should be (Ch. VF)

[ 1
3/2

S(x) a 1- (x/Ii sec V)2

Thus the integral equation to be solved for t(r) is

[ 1 JK 1- (x/R sec W)2 = 2 cos w
t(r)r dr

XRCOS ~ ~

(7f-2)
—

(7f-3)

(7f-4)

(7f-5)
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where K is a constant dependent upon the given
able transformation of coordinates,Eq. (7f-5)

where

fd=l - (x/R seck)2

m=l - (r/R)2

wing volume. By s.Suit- – ““‘-
may be written in the form

— -.. .— -—..— — * -:-

(7f-6)

—

-.
.=

—

Eq. (7f-6) is called Abel’s equation and its solution is well known,
cf., Ref. 19. ‘TIEsolution to Eq. (7f-6) is

t(r) = ~R~sv~-ir/R)2] “- ;

-.

.-. ..-— =—

and substitution of this in Eq. (7f-1) determines K; then
.

.—

Equation (7f-7) thus gives the
result in minimum drag for the

distribution of thickness
circular planform wing of

—
-’

(7f-7)

which Will
given vO.1~{1

To apply the circular planform solution to the original problem of
finding the optimum thickness for an unyawed elliptic pltiorm, tie

—

the following change of coordi~tes: ._

Y
d /

u )! / @/

$ ::a

x

d

Fig. 7f-2

.—

x;=—

Y=
bJ
R

(7f-8)

.

.
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. The circular wing is then transformed into an elliptic wing whose equa-
tion is

It can be verified that the

.

(:)’+(a’=1
thickness distribution

x’ Y’() ()]--- —
a b

(7f-g)

obtained fran Eq. (7f-7) through the transformation Eq. (7f-8) is the
optinnm for this more general case; that is, the eq,,valent linear dis-
tribution for Eq. (7f-9) with a set of
angle w as shown in Fig. 7f-2 is

.
where

[

s(x) =~l-
31-CZ

Mach planes inclined at the

‘ 3/2

()]
~
1 (7f-lo)

Since Eq. (7f-10) represents a Sears-Haack body, the thickness given by
Eq. (7f-9) is optimum for the unyawed elliptic wing.

Determination of the total drsg in this optimum case involves an
integration of the drag increments from these Sears-Haack bodies as
seen at each angular reference station. ~ the reference station is
at an angle e from the horizontal, then the Mach planes cut the elliptic
planform at an angle v defined as (Ch. IVC).

and the total drag is

(7f-11)

D=
J

2* dD~ de
o
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The increment of drag at each reference station is (Ch. IVC)

.-

dD

Jf
qmm

-..
—=

-G~o
S“(x)S’’(~)Znlx- ~ldx d~

de — -.

4qv2=—
~2Z4

and the total drag for the

Dopt =

(’7f-l.2)

-, . . .—

optimum thickness distribution Eq. (7f-9) is

4qv2

na%

M2 -l+@
b2

Defining

and

D = CDql’tab

then
—

CD
opt =

(M2-‘+s)t~—
a2 “3/2

()

M2 b2 a2 --l+—

This result agrees with that given by Jones(14). ~

(7f-13)

. .

“

—
—
—

-. -.
—

(7f-14)

— -.

. ..=
.-

.—
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CHAPTER VIII. UNIQ=SS PROBLEMS FOR OPTIMUM DISTRIBUTIONS IN SPACE

A.— THE NON-UNIQUENESS OF OPTIMUM DISTRIBUTIONS IN
SPACE - “ZERO LOADINGS”

In the subsonic flow of a perfect fluid the only drag caused by a
lifting wing is vortex drag. The minimum possible vortex drsg for a
planar wing is obtained when the spanwise lift distribution is elliptical.

(15) t~ chordwise location of theAccording to Munk’s stagger theorem
lifting elements is unimportant, so there are infinitely msny distribu-
tions of lift over a given planform which produce the minimum drag.

In supersonic flow lift causes both vortex drag and wave drsg. The
chordwise location of lifting elements is still unimportant in deter-
mining vortex drag, but does tifect the wave drag. For this reason the
optimum lift distribution for a planar wing is generally unique in super-
sonic flow. However, spatial lift distributions offer more freedom in
the srxrangementof lifting elements and the optimum distributions in
space are not genera12y unique even in supersonic flow.

For exsmple, the minimum wave drag due to lift in a double Mach
cone space can be attained with each of three different stiple lift dis-
tributions. (See VI-C.) The first is a constant intensity over the
circulsr disc located at the maximum cross-section of the space. The
second is an elliptical intensity concentrated on the axis of the double
Mach cone. The third is a constant intensity throughout the entire
double Mach cone. If the first two distributions sre superimposed, one
carrying a unit of positive lift and the other a unit of negative lift,
the result is a net lift equal to zero. Also, the net strength of the
lifting elements intercepted by any cutting plane inclined at the Mach
angle is zero. This means that the combined distribution has zero wave
drag. Furthermore, there are no disturbances whatsoever produced on
the distant control surface near the Mach cone and no wave drag inter-
ference can exist with any other loading. If another such combined dis-
tribution with opposite sign is placed on the ssme stresmwise line with
the first one, then, by Munk’s stagger theorem, the vortex drag is zero
also. This is one exsmple of a “zero loading” (see illustration), and
many others can be constructed.

-- -.

.
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Such a “zero loading” placed within ~ space alters neither the
lift nor the drag of the original lift distribution. For this reason

—

optimum lift distributions in three dimensions are never unique (unless
the space degenerates into a surface).

Similar arguments can %e applied to optimmn distributions of volume.
—

For sm exsmple of.non-uniqmness in such cas~s see Ch. VII. . .

B. UNIQUENESS OF THE DISTANT FLOW FIELD ‘—
PROEUCED BY AN OPTIMUM FAMILY

It has been shown that optimum lift or vohzne distributions in
space are not genera13y unique, since a group of optimum distributions
can be obtained from one given optimum distribution by superposition of
“zero loadings.” Each member of the group produces tk- ssme (minimum)
value of drag for a given total lift or volume.

—
—

From the method of construction of this group (by the use of “zero
loadings”) it follows that each member produces the SEUE velocity per-
turbation field in the Trefftz plane and on the distant control surface
near the Mach cone. It can also be shown that there are no optimum dis-
tributions outside this group, since allpossible optimiundistributions-
are indistinguishablefrom the “distm~ viewpoint. .-

Assume that flopt(~~~,~) a~f~pt(~,~,~) are members of the opti-”

mum fsmily not included in the original group-(whose me~~ers were rela~d
through “zero loadings”). Assume also ths,t

duce identical perturbation velocity fields

—
—

—

—
-.

.-..+
—
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*

distribution. Then the drag of fl equals the drag of f2

)

opt opt (m

‘lOpt = ‘%pt
by definition of the optimum fsmily.

‘sO ‘%pt ‘y be
set equal to f~opt + ~, where Af carries zero net Iift (or volume),

but has a veloci~y perturbation field which is not identically zero far
from the singulsrities.

The distributiondf is orthogonal to (does not interfere with) fl
opt“

This follows because any given lift or volume distribution csn be improved
through combining it with a distribution having zero net lift or volume
if there i-sinterference drag. However fbpt’ by definition, cannot be

improved, and must, therefore, be orthogonal to N.

Since Af.is orthogonal to flopt, D%pt = Dkpt + D&, but we also

kllOVthat D2 = Dl and, therefore, D& must eqpal zero. Here we
opt opt

can obtain a contradiction since both the vortex drag and the wave drag
depend on the squeres.of velocity perturbations (in the Trefftz plane
and far out on the Mach cone) and the drag contribution fran each portion
of the control surface is non-negative. If N produces ~ disturb=ces ‘–
far frcm the lifting system it must have positive drag, and so Af must
produce identically zero disturbances to have zero drag.

The above contradiction“showsthat all the members of the optimum
family sre indistinguishable from the distant viewpoint.

If drag is ccmputed from the “close” viewpoint the above argument
cannot be made. Drag contributions then appear as the prcduct of local
pressure times angle of attack on the wing surfaces, and these quantities
are not necessarily non-negative at every point on the surface.

c. UNIQUENESS OF THE ENTIRE “EXTERNAL” FLOW FIELD—
PRODUCED BY AN OPTIMUM FAMILY

It has been shown that any two members of an opthmnn femily produce
identical velocity perturbations on the distant control surface.

~ flopt(~,q,~) and f20pt(~,TI,L) are two members of an opt~~

‘WQ’ ‘&n ‘%pt - ‘Popt
must produce identically zero velocity per-

turbations on the distant control surface, and the drag will be zero.

Let “S” designate the space within which the singularity distribu.
tion fl - fz exists, and let “E” represent the external flow field

opt opt
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consisting of points whose aft Mach cones --
.—

do not intersect “S.” Assme that at
some pointin the external field “E” the
resultant velocity vector is inclined to ‘.1.

.-
NACA TM 1421

— . —.-

the free stresm direction. Then an ele- – “–’4
mentary wing can be inserted at that
point with the angle of attack ad~usted

~

~ :-
to give negative drag on the wing. Since s E.
the singularities in “S” are outside the
aft Mach cones of all points in “E,” the \.\
net drag change produced by the el&mentary .. /

/-%
wing is negative.

‘owe=r’ f%pt - f%pt
/. -c

+

is a singularity distribution causing zero ““”%&..-

drag, so flopt - f20pt plus the elementary —..-
wing is a system having negative drag, althoygh it is an isolated systeii
inserted in a unifbrm flow field. However, the drag”of$his system eval-
uated on a distant control surface comes frmi a summatb”n of positive
quantities and cannot be negative. TMS contradiction~hows that the ._. ....
external flow”field “E” produced by fl - f“2 mtit-consist of velocity

opt opt ~
vectors aligned with the free stream di~ection.- These .vectorsmust also-
have the magnitude of the free stresm veloci~; hence> the external flow
field is completely undisturbed, and it can be concludeiithat all members
of the optimum fsmily produce the same flow pattern in the external
field “E.”

—
—

It is of interest that a similar proof ~annot be m&de for subsoriicl
flows. In such cases there is no external region where an elementary
airfoil can be inserted without produci& int&ference effects at tfi
original singularities.

+..—.
.,

D. EXEYTENCE OF SYMMETRICAL OPTIMUM DIS@~~ONS ““—
IN SYMMETRICAL.SPACES -.“ ..:-. = .-

_... —

It can be shown that, if the boundary of a space h% a horizontal “-
plane of symmetry, then there is one member of.the femily of optimum
lift distribution within the space which is s__@iCdabQut the plane.
The proof is as follows:

—

Let Zopt(x)y,z]represent an optimum lift distribu~ion in the space.
The distribution Zopt(x,Y~-z) has the same drag and lift-(the drag of -

-.
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the individual lifting elements
is unaltered by the change of
position, and the interference
drag of any element pair is
unaltered also).

Since Zopt(x,y,-z)has the

ssme lift and drag as ‘opt(x~yJz)

it is also a member of the optimmn
fsmily. U members of the opti.
mm fsmily produce the ssme exter-
nal flow field, and any distribu-
tion produci~ that field is an
opthum . The distribution,

~zopt(x)Y) lzopt(%Y)-z) + ~
2

z) pro-

duces the ssme external flow field

u

= zOpt(x)yjz). It is, therefore, an optimmn, and since it is also

synnnetricalabout the horizontal plane the proof is completed.

Similar proofs can be developed for cases where lift, thickness,
and side force elements are present. Also certain other plsnes of
symmetry can be used.
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CHAPTER IX. INVESTIGATION OF SEPARABILIfi OF L12?T,

THICKNESS AND SIDEFORCE PROBLEMS*

A. THE SEPARABILITY OF OPTIMUM
—

—
DISTRIBUTIONS PROVIDING LIl?TAND VOLUME

Separability Questions =

For the purpose of drag evaluation a complete.aircrsftis repre-
sented by a distribution of lift-elements, volume elements and possibly
sideforce elements in space. A certain net lift must be provided to
support the weight and a net volume must be provided to house paylo~, _
fuel, structure, etc. The drag should then be made’as small as possible
with the net lift and volume equal to the prescribed values.

Several questions arise. Cs.nwe first study t$e problem of how
best to provide the required lift (with no net volume), then determ~e ‘“
the best way to provide the required volume (with no net lift), and
finally by superposition obtain the optimum distributions of singulari-
ties for shnultsmeouslyproviding the net lift and VOIURE? If t~s-”
procedure is possible will the drag of the combinat~on be tti”sum of–
the drags of the two superimposed distributions? Does the optimum way
of providing the lift with no net volume require only lifting elements
or are volume and sideforce elements necessary? Similarly does the
optimum way of providing the volume with no net lift require singulari-
ties other than volume elements?

For horizontal planar systems the answers to these questions are
comparatively simple. The lift and volume problems can be studied 6epa-
rately and the opthnun singularity distributions su~%posed. The drag
of the combination is the sum of the drags of the individual distribu-
tions. Finally, th~optimum way of providing the lift requires only
lifting elements and the optimum way of providing volume requires only
volume elements.

All of the abave results follow frm-the fact t-%atin horizontal ‘.
planar systems there is no interferencedrag among lift, sideforce, and
volume elements. However this is not true in general for non-planar
systems, and consequently the above problems must be re-investigated
for these more general configurations.

* Portions of this chapter have appeared in the paper “The Drag of
Non-Planar Tkdckness Distributions in Supersonic F-w,” published in
tke Aeronautical Quarterly, Vol. VI, May 1955”. ‘“

—

.

.“

—

.—

—
—

—

* --
-.

.

..

.

--

.— ,.—



NACA m 1421 95

Optima Distributions Providing Lift sad Volume

In non-plansr distributions of lift, sideforce and thickness there
is generally interference among the different singularities. This means
that the drag for a given net lift may in some cases be decreasedby
adding thickness or sideforce elements SM taking advantage of negative
interference drag.

In order to study such cases let Z(X,Y,Z), t(x,Y,z), and s(x~Y~z)
represent respectively distributions of lift, thickness end sideforce
in x,y,z space within some bounds@. Here we will exclude, without loss
of generality, those distributions of Z and s which are completely equiva-
lent to elements of volume or thickness (see III-A, the closed vortex

line). Let lll(x,y,z) + tl”(x,y,z) + sl”(x,y,z) give the minimum pos-

sible dra& for one unit of net lift snd zero net thickness and sideforce.
(The superscript simply indicates the net lift or thickness or sideforce

of the distribution.) Also let 220(x,y,z) + t21(x,y,z) + s20(x,y,z) give

the minimum possible drag for one unit of net volume and zero net lift
and side force. We ask what distribution gives the minimum drag when
both the net lift and net volume are simultaneously prescribed and equal
to Lo and V. respectively?

[ 1[
Consider the distribution A(x,Y,z)=~ Zll+tlO+SIO +Vo 220+t21+s2

5
which gives the prescribed net lift and volmne. For this to be the opti-
mum it is necessary and sufficient that it be orthogonal to every distri-
bution 2° + to + so, which contains zero net lift, zero net volume and
zero net sideforce. For exsmple, any loading 2° + to + so multiplied by
an arbitrary constsmt C can be superimposed on A without altering the
net MM, Lo and net volume, Vo. If this distribution 2° + to + so were

not orthogonal to A, then C could be ad$usted to give a negative inter-
ference drag withA greater than the drag of C(ZO + to + so) by itselY.
Hence the distribution A could be improved and therefore would not be
an optinmn. It Is also true that ~ possible improvement of A must be
obtainable by superposition of a loading of the type C(ZO + to + so) on A.
So for A to be an opthnum it is both necessary and sufficient that A be
orthogonal to any loading 2° + to + so.

However, 211 + tlo + s~ 0 + t21 + S200 and 22 are each orthogonal to

any20+t0i-s0 since each one is an optimal distribution in its own
restricted class. Therefore because of the linesrity of the interference

terms LO(Z1l + tlo ‘ @ + VO(220 + ts + %% OfihOgOml ‘0 ~
2° + to + so and A(x,y,z) is the optimum distribution having lift = ~

and volume = Vo.
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... ....

The Drag of the Gptimum Distribution-ProwLdiw– Li.ftand
Volume in a Region Having a Horizontal Plane of Symmetry

The drag of the optimfi distribution A(x,y,z) must next be deter-

mined. If 211 + tlo + slo is orthogonal to 220 + t-21+-S2° then the
—

(drag of A(x,y,z) is just the sum of the drags of ~ 211-1-tl” + Slo)

(and of V. 220 + t21 )+ Sz” . ( )( )We know that 72° -f-t21 + s2° ~ tl” + sl”

so the question arises is ( )22° + tz~+ Sz” alSOliI1? (Iiere the sym-

bol ‘~’ indicates orthogonality.)
.- ..=

In order to answer this qpesti.onit is convenient to represent””

Z1l(X~Y~Z)bY a concentrated ~ft Of one ~it Z151 PIW a distribution
containing zero net lift Zlo(x,y,z). The concentratedunit of lift can

be placed anywhere in the space and then Zlo(x,y,z)”issimply the dif-
. .

.

..-

? —

ference between 21L(X,Y,Z) and 215A c!a-<~--~..a.!-J.-. --m-w---l-...+ A-

replace t12 by t125 + t02(x,y,z). The op&imum distribution is then ‘--.,,=-.-.: ,,-- — --

(A(x,Y,z) = Lo Z151 + 210 + tlo -1-Slo)(
i-V. t2# + 220 + tzo -1-S20)

The distributions in brackets

or if

The concentrated unit of lift

are orthogonal it. ...
.

220 + *20 + .s20 -
-. .-.. —

210 + tlo + Sf
—.- .-

— .

Z151 may be located at any point in

(the space and has the sane interference drag with t2b1 + 220 + t20 )
+ Sz”

for all locations. Thus if there is

(
?

point in the space where a unit

of lift has no interference~th t2b + 220 + t20 )+ S20 the orthogo~

nality of the
depend on the

two components of A(x,y,z) is assured. (&s does not _
connectivity or the convexity of the space.)

-----

..,._
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For example, if the boundary of a space has a horizontal plame of
symnetry, then there sre optimum distributions in the space having sym-
metry properties. (The proof is similar to that given in Ch. VIII for
a lift distribution.) If some portion of the plane of symmetry is con-
tained inside the space then the concentrated unit of lift can be located
in this plane and orthogonality demonstrated.

B. TEE NON-~CE OF SOURCES WITH OPTIMUM—
DISTRIBUTIONS OF LIFTING ELEMENTS IN A SPHERICAL SPACE

In general there is interference between non-planar distributions

(1) . This means thatof sources am.d lifting elements, as shown by &yes
in general the optinnzndistribution of singularities which provides oqe
unit of lift may contain volume elements or sources as well as lifting
elements. However for certain spaces it can be proved that there is no
interference between a source and the optimum distribution of lifting
elements alone. So for these spaces the optimwn way of providing lift
requires no sources.

Following is a proof that a single source placed at any point within
a sphere has no interference drag with the optimum distributions of
lifting elements alone in the spi.ere. -

An optimm distribution of the total lift, L, within a
radius “R” (center at the origin) is given by (see Appendix

where r = Spherical radius to
any point. Let a source loca-
ted at m arbitrary point, P,
within the sphere be denoted
by S, and let P’ be the pro-
jection of P on the horizon-
tal (x-y) plane. The poten-
tial of S is identical with
that caused by some lifting

element distribution, 21,

sphere of
VI-1)

on the line between P and P’ plus a source S’ at P’. (See Ch. 111
Section B. The shells which have sources and sinks on the top and bot-
tom faces respectively are arranged to form a vertical colmn of infini-

tesimal cross section.) The distribution 21 has zero net lift.
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between Zopt and S issequal to the interference.
.

between Zopt and S’ plus the interferencebetween Zopt and 2A. The first
component is zero because of the symmetry of Zopt about the x-y planel

(see the discussions of interference in Ch. TV). If the second compo-
nent were not zero it would be possible to obtain a distribution of
lifting elements alone with lower drag tti Zopt. Since Zopt has the””.
minimum dreg by definition, the second interference &mponent is also
zero. This completes the proof for a.~articular Zopt;

This proof canbe extended to the entire family of optimum lift
distributions in the sphe~ as follows. As previous~ mentioned, ald
of the optiminndistributions produce identical effects far out on the
Mach cone and far behind the wing system. Interference drag terms cm-
be computed from these distant effects alone. Hence & source has the
sane interference drag with each of the optfannndistributions, and this
is zero for all cases since it has been proved zero fti one case.

—

This proves that source distributions in a spherical volume cannot
reduce the drag &ttained with any of the optimum distributions of lifting
elements alone in that volwne. L.—

Similar methods may be applied to ellipsoids having one principal
axis vertical, to double Mach cones, and to-many othe~ volumes. It iS
sufficient that the volume have a horizontal plane of symmetry, and that
the vertical lines connecting all points in.the voh.ne with this plane
are entirely contained within the volume.

c. THE NON-~ENCE OF SIDEFORCE ELEMENTS WITJ3O-~IMUM—
DISTRIBUTIONS OF LIFTING ELEMENTS IN A SPHERICAL SPACE

AS shown by =yeS (1) there is, in general, inter~erence between
non-planar distributions of lifting elements, sideforce elements and
sources. It has been proven in Ch. IX-B that there is no interference
between a source and the optimm distribution of lifti~g elements alone
in a spherical space. It remains to show a similar result for the inter-
ference.of a sideforce element with the s-optimum lift distributions.
The proof will be carried out in a manner similar to t_@atof the previous
proof.

Consider an optimum distribution of total lift L in a sphere of
radius R; the lift distribution is given by

—
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space.
and let
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is the radius to any point from the center of the spherical
Let S be a sideforce element at a point P within the sphere,
P’ be the projection of P on the xy plane.

a?

u ~-

Fig. 9C.I

part of the proof it is necessary to show how a sideforce ele-
ment can-be transfer=d from one point to another along a line pmallel
to the y axis. The procedure is shown in Fig. 9c-2. First a vortex
ring of infinitesimal height and finite width, d, is superhnposed on the
original sideforce element; the strength and placement of the former is

2

v —-——G—

+
VORTEX LIFTINGLINE
RING + DOU6LET

Fig. 9c-2

—

SIDEFOPCE= ELEMENT

to be such that the sideforce at P(x,y,z) is just canceled. The poten-
tial for the vortex ring can be found by integrating the potentials for
constant-strength Infinitesimalvortex rings (Ch. 1114) distributed along
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the line x,z = Constants. The second step is to superimpose on the
vortex ring a finite width lifting line ‘Idoublet,” This latter singu-
larity is formed by taking the limit as two equal and opposite strength
finite width lifting elements arrebrought together keeping the product
of lifting element strength and distance apart constant. The potential
of the original sideforce element at P(x,y,z) plus the two added ele-
ments, @s(x,Y,Z) + % + ~, is identical to that for a sideforce element

at P(x,y-d,z).

Thus the potential of a sideforce element “S” inside the spherical
space is the ssme as that for a finite vortex ring ‘IV,”plus a lifting
line doublet “D,” plus a sideforce element “S’” in the vertical.plane of
symmetry (at P’ in Fig. 9c-1). The interference dra &betweenthe opti-
IUUMlift distribution 2opt and S is equal to the interference drag

between Zopt and S! plus that between Z@t and V plus that between Zopt
and D. The last of these drags must be zero since D is a lift distri-
bution having zero net lift; if this were not zero D could be combined
with Zopt to form another distribution having less drag than Zopt
(Section 4H), in contradictionof original.assumptions. Since V canbe
thought of as built up from distributions of infinitesimalvortex rings,
which in turn are made up of source-siti doublets with axes aligned with
the stresm direction, the interference drag between V and Zopt is zero
by the proof given in Ch. IX-B.

The only possible interference drag wit-hZqt co~d be that of the
sideforce element S! in the vertical plane of synznetry~and this can be
shown to be zero because of the symmetry. Consider the interference
drag of S’ with lifting elements in the resr”Mach cone..ofS’ aS shown
in Fig. 9c-3a. The interference drag wiJl be due to the downwash of S’

/
/
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(b)
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Fig, 9c.3
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acting on the lifting elements (see Ch. IV-J); for each lift element lb

which receives a downwash from S’ there is another lift element & of

the ssme strength which receives an upwash of equal magnitude. Hence
the interference drag of S‘ with each ~air of lifting elements in its
rear Mach cone is zero. Consider now Fig. 9c-3b re~resenting S’ and a
pair of lift elements in its fore Mach cone. The interference drag
here is due to sidewash fields from the lift elements acting on S’. But
for every lift element la pr@ucing a sidewash va on S’ there is a sym-
metrically placed lb producing a sidewash vb = -Va On S’. Again the

interference drag is zero. Thus there is no interference drag between S’
and Zopt and hence none between S md Zmt for this particular Zopt.
Following the ssme type of reasoning as is given in Ch. IX-B, this proof
can be extended to all optimm distributions within the sphere; this is
so because of the uniqueness of the optinnanexternal flow field.

Thus it is proven that sideforce distributions, as well as source
distributions, in a spherical space cannot reduce the drag attained with
any of the optimum distributions of lifting elements alone in that space.

Similar methods may be applied to other spaces if those spaces have
both a horizontal and a vertical plane of symmetry containing the free
stresm direc%ion and meet certain convexity requirements. The latter
can be stated as requirements that straight lines from each point within
the space which extend to the planes of symmetry and are perpendicular
to them must lie entirely within the space.

D. INTERFERENCE PROBLEMS IN CERTAIN SPACES.
BOUNDED BY MACH ENVELOPES

Let some region “R” be chosen in the y-z pl.me, which is perpen-
dicular to the flow direction. Consider the space “S” consisting of
points such as “P” whose fore or aft Mach cones intersect sreas in the

z BorWVDARY,,OF

A

/?EGK2N “R
IN Y-z PLANE7

x

Z177?E’L.E - .

A set of parallel Mach planes cutting this source distribution determines
an equivalent lineal source distribution according to the method of Hayes.
For convenience, t~s equivalent lineal sowce distribution will be denoted
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y-z plane which are completely contained in the region “R.” An optimum v
distribution of lift in this space is given by a uniformly loaded cascade
of airfoils (of infinitesimal chord and gap) covering the region “R,”
since this gives constant downwash in the combined flow field. >..

The resulting flow pattern is two-dimensional~thin the space %.”
It then follows that the sidewash and pressure are Zero in this space
and sideforce elements or sources introduced in “S” have no interference
with the optimum lift distribution. .-. - —

E. THE IN~CE BETWEEN LIFT AND SIDEFORC!EELEMENTS—
AND AN OPTIMUM DISTRIBUTION OF VOLUME EL@@WTS

Consider a Sears-Haack body placed on”the axis ;f a double Mach
cone, and place a lifting element as shown in the illustration. The
interference drag between body

—

and lifting element is composed LIFT ELEMENT

of two parts,the effect of the u>
TRAILING

body nose on the lifting element
and the effect of the lifting
element on the tail of the body.

The nose of the body corre-
sponds to a source distribution

..

and produces an upwash velocity at
the lifting element. This causes
negative drag. The lifting element produces a positive pressure at &e
tail of the body. This also causes negative drag so the total inter-
ference dragis negative. (This argument, of course~-applies not only
to the Sears-Haack shape but to other shapes also.)

The total drag of the combination is equal to tl& drag of the
Sears-Haack body alone plus the drag of the-lifting e_lementalone plus
the interferencedrag. The Wag of the lifting element alone is pro-
portional to the square of the lift it carries. However, the interfer-
ence drag is proportional to the first power of the lift on the element
and to the first power of the strength-of those sources and sinks in
the body which are affected by interference. The lift carrie~ by the
element can, therefore, always .be&de sma~ enough so that the drag of
the element alone is less (in absolute magnitude) than the interference
drag. Thus, the total drag of the combination can be made less than
the drag of the Sears-Haack bo~ alone. ““ ..

—

●

This suggests placing elements of lift-and sideforce in a ring
—

about the Sears-Haack body, and so arranged that the force on each ele-
ment is directed radially outward frcm the body.

.
This process msy be

used to construct a central body plus cylindrical shell.which has zero
drag (see Ch. IX-F). ... —

. .* -.
——.-
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Such a system

Ferri(20), and its

(21) and later bywas investigated first by Ferrari

two-dimensional smalogue is the Busemann biplane.

It, therefore, appears that the optimum distribution in space of
volume elements alone yields minimum drag values consistent with the
Sears-Haack values. However, the optimum distribution of volume elements
plus lifting and sideforce elements should give zero drag for any total
volume.

F. RING WING AND CENTRAL BODY OF REVOLUTION HAVING ZERO DRAG—

The theoretical mh.irmxndrag value for a distribution of thickness
elements that has no interference with lift or sideforce elements is the
drag of a Sears-Haack body. It has been stated in Ch. IX-E that inter-
ferences between thickness distributions and distributions of lift or
sideforce may protide negative drag contributionswhich reduce the theo-
retical minimutnwave drag of a system to zero. This Section illustrates,
for the double Mach cone volune, a central body of revolution which,
together with a certain distribution of radib.1forces on a cylindrical
shell, has zero wave drag. The method employed here to design such a
system makes use of certain equivalences between sources and line distri-
butions of elementary vortex shells. (These equivalences are discussed
in Ch. III-B.)

Consider a radially symmtric, continuous distribution of sources
filling a cylindrical space contained within the double Mach cone volume.

DOUBLE MACH ~
CONE VOLUME
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by F(x). Because of the radial symmetry of this cased F(x) is inde-
pendent of the angle E)on the distant control surface”. A central body
of revolution which is represented by the negative of F(x) will Just
cancel the velocities induced at the distant control Stiace by the
original sources. The drag of the combined system is then zero. The
remaining step is to relate the original source distribution to a dis-
tribution of radial forces around the boundary of the~cylindrical space.
It can be shown (see Ch. III-B) that a source and a sink of equal
strength, lying on the ssme line parallel to the flow~direction,have
exactly the same effect at the distant control surface as a line of con-
stant strength elementary vortex shells connecting t& source aridthe
sink. If such vortex shells are considered to replace-a source distri-
bution whose strength is independent of the radial di~tance, the forces
on adjoining shells inside the cylinder cancel one anbther, while the
forces on the outer sides of the shelLs next to the boundary of the
cylindrical space determine the radial force. A cylifidricalshell having
this radial load distribution plus a central body of Fevolution which
corresponds to the source distribution -F(x) constitute a system having
zero drag.

As an example, suppose that a cylinder-withina double M&h cone -
volume is considered to contain a source di.stributi.onwhich vmies lin.-
earl.ywith axial distance but is independent of radial distance. That
is, the source strength per unit area inside the cylinder is

()f=-fol-:

where x is measured from the leading edge or the cylinder, c is I& -
cylinder length,

of
to

$

the cylinder.
this original
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.
.—

—

>--
—

.-

-.

.

. . .-

— —
and f. is the strength of the sources at the rear_.face ,.. .—
The equivalent linear sow–cc strength corresponding
distribution is given by.

3(%)HNI’’2}.
J

.
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where R is the cylinder
distribution is assumed
the accuracy of slender
body iS

105

radius. Now, if the negative of this source
to represent a body of revolution, then within
body theory the area distribution of the central

J
x

s(x) = .* F(x)dx
-pR

For illustration, the dtinsions of the cylinder are assumed to be
such that @C = 1/2; that iS, the radius is half the dis&nce between
the axis and the apex of the double Mach cone volume. The shape of the
central body of revolution which cancels the effect of the original
source distribution for this case is shown in the accompanying figure.
The distribution of radial force which cam replace the original linearly
varying source distribution is

,, CJx(, -%)dx=-(3(1 -az(x) =~f

1(X)=*+

f!?r .%
()F~Lo -

Ax)
p~’ “5

/?ADiAL FORCEDISTe\BUTcoN
ON CYL/NDRICALSHE.LL

.5 - 0

U.

e 0---

CROSS-SECTiONA L

DOUBLE MACH SHAPEOFCENTRAL &ODY

CONE VOLUA4E OF REVOLUTION WHICH

m =W
CANCEL6~AT 016TANTCONTROL

SLU?FACE)DIS TUUBANCEDUE
TO RADIAL FORCE

L I I I I

-.5 0 .5 1.0 1“5 x/c

CENTRAL BODYOFREVOLUTION AND RADIAL

FORCE DISTRIBUTION HAVING ZEROwAvEDRAG
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CHAPI’ERx. ~SULTS AND CONCLUSIONS
.-
.-

It appears that certain idealized spatial distributions of lift ‘“
and thickness may produce materially less wave drag and vortex drag than
comparable planar systems. It is by no means certain that such advan-
tages can be realized in practical aircraft designs, but further inves~
tigation of specific configurations is warranted.

One of the interesting features of spatial lift and thickness dis-
tributions is that optimum arrangements are generally not unique. This
may raise the problem of determining which member of w opt~um f~i~
has the least surface area or is best adapted for structure.

Another interesting property of spatial distributions is the inter-
ference which may arise between lift and thickness distributions. Thfs_
interference can be used”to account for the zero wave drag of a Busemati
biplane or of Ferrari’s ring wing plus central body. However it is
shown that in some cases thickness distributions have no interference
with an optimum spatial distribution of lifting elements, and so cannot~_
be used to reduce the drsg due to lift in such cases.

A number of other results are obtained in this report and detailed
discussions of the basic singularities and Hayes’ method of drag evalu- .
ation are included. However it is clear that the scope of the field is
such that this investigationmust be regarded as a preliminary exploration.
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